cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684
Offset: 0

Views

Author

Keywords

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A027851(n) + A029851(n))/2.

Extensions

a(9) added by Andreas Distler, Jan 12 2011
a(10) from Distler et al. 2012, added by Andrey Zabolotskiy, Nov 08 2018

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A023814 Number of associative binary operations on an n-set; number of labeled semigroups.

Original entry on oeis.org

1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Extensions

a(8), a(9) from Distler and Kelsey (2013). - N. J. A. Sloane, Feb 19 2013

A058129 Number of nonisomorphic monoids (semigroups with identity) of order n.

Original entry on oeis.org

0, 1, 2, 7, 35, 228, 2237, 31559, 1668997, 3685886630
Offset: 0

Views

Author

Christian G. Bower, Nov 13 2000

Keywords

Crossrefs

Cf. A027851 (number of all nonisomorphic semigroups).

Formula

a(n) = 2*A058133(n) - A058132(n).
a(n) < A027851(n) except for equality iff n = 1. - M. F. Hasler, Dec 10 2018
From Elijah Beregovsky, May 13 2025 (Start):
a(n) >= A027851(n-1).
Conjecture: a(n) = A027851(n-1)*(1+o(1)). See Koubek and Rödl paper in the Links.
Conjecture: a(n) = A058153(n)/n! * (1+o(1)). See Grillet paper in the Links. (End)

Extensions

a(8) from Christian G. Bower, Dec 26 2006
a(0) = 0 prepended by M. F. Hasler, Dec 10 2018
a(9) from Elijah Beregovsky, from the work of G. Cruttwell and R. Leblanc, May 12 2025

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079199 Number of isomorphism classes of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 12, 130, 1590, 26491, 1610381, 3683808612, 105978166390449
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079200.
Since this is the number of nonisomorphic noncommutative semigroups of order n, A079199(n)=A027851(n)-A001426(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

Added terms a(5)-a(9). - Stanislav Sykora, Apr 03 2016

A058108 Triangle read by rows: number of nonisomorphic semigroups of order n with k idempotents.

Original entry on oeis.org

1, 2, 3, 5, 9, 10, 20, 50, 72, 46, 171, 309, 590, 594, 251, 5284, 2806, 5422, 7772, 5668, 1682, 1224331, 58583, 61323, 101539, 109107, 59576, 13213, 3667785000, 9207430, 1150085, 1466691, 1983558, 1626956, 690871, 119826, 105952488687468, 25412267163, 136799017, 27690828, 36991211, 39865274, 25666762, 8739857, 1228712
Offset: 1

Views

Author

Christian G. Bower, Nov 09 2000

Keywords

Examples

			Triangle begins:
    1;
    2,   3;
    5,   9,  10;
   20,  50,  72,  46;
  171, 309, 590, 594, 251;
  ...
		

Crossrefs

Row sums give A027851. Main diagonal: A058112. Columns 1-3: A058109-A058111.

Extensions

Updated Feb 19 2001
More terms from Andreas Distler, Jan 13 2011

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A079173 Number of isomorphism classes of non-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 5, 3306, 178981764, 2483527537092910, 14325590003318891522247046, 50976900301814584087291487087212542367, 155682086691137947272042502251643461917498831796991599, 541851439802559836957713164869818405872834954135521300809796661279574643
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079174.

Crossrefs

Formula

a(n) = A001329(n) - A027851(n).

Extensions

More terms from Christian G. Bower, Nov 26 2003
a(8)-a(9) added using the data at A001329 and A027851 by Amiram Eldar, Jul 19 2025
Showing 1-10 of 26 results. Next