cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684
Offset: 0

Views

Author

Keywords

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A027851(n) + A029851(n))/2.

Extensions

a(9) added by Andreas Distler, Jan 12 2011
a(10) from Distler et al. 2012, added by Andrey Zabolotskiy, Nov 08 2018

A027851 Number of nonisomorphic semigroups of order n.

Original entry on oeis.org

1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292
Offset: 0

Views

Author

Christian G. Bower, Dec 13 1997, updated Feb 19 2001

Keywords

Crossrefs

Formula

a(n) = A001423(n)*2 - A029851(n).
a(n) + A079173(n) = A001329(n).

Extensions

a(8)-a(9) from Andreas Distler, Jan 13 2011

A023813 a(n) = n^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 8, 729, 1048576, 30517578125, 21936950640377856, 459986536544739960976801, 324518553658426726783156020576256, 8727963568087712425891397479476727340041449, 10000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Comments

Determinant of n X n matrix M_(i,j) = binomial(n*i,j). - Benoit Cloitre, Sep 13 2003
Number of commutative binary operations on an n-set. Labeled commutative groupoids.

Crossrefs

Programs

Formula

a(n) = Product_{k=1..n} n^k. - José de Jesús Camacho Medina, Jul 12 2016
a(n) = n^A000217(n). - Alois P. Heinz, Aug 06 2018

Extensions

Better description from Amarnath Murthy, Dec 29 2001

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079240 Number of associative non-commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 0, 48, 2344, 153000, 15875924, 7676692856, 148188196673360
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Formula

A079230(n) + A079232(n) + A079234(n) + A079236(n) + A079195(n) + a(n) + A079242(n) + A079244(n) + A063524(n) = A002489(n).
a(n) = Sum_{k>=1} A079207(n,k)*A079210(n,k).
a(n) = A023814(n) - A023815(n) - A079242(n). - Andrew Howroyd, Jan 27 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 27 2022

A079198 Number of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 50, 2352, 153002, 15876046, 7676692858
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

a(n) + A079192(n) + A079195(n) + A023815(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079200 and the corresponding element of A079210.
Since this is the number of labeled noncommutative semigroups on an n-set, a(n) = A023814(n)-A023815(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

a(5)-a(7) added by Stanislav Sykora, Apr 03 2016

A079192 Number of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 6, 18904, 4293916368, 298023193359221998, 10314424798468598595515695154, 256923577521058877628624940679487983651948, 6277101735386680763835789098689112757675628513119817261598
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A002489, A023813, A023814, A023815, A079193 (isomorphism classes), A079194, A079195, A079198.

Formula

a(n) + A079195(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079194(n,k)*A079210(n,k).
a(n) = A002489(n) - A023813(n) - A023814(n) + A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079175 Number of isomorphism classes of associative closed binary operations (semigroups) on a set of order n, listed by class size.

Original entry on oeis.org

1, 1, 2, 3, 2, 0, 7, 15, 2, 0, 0, 7, 5, 0, 62, 112, 2, 0, 0, 0, 6, 0, 0, 8, 0, 2, 51, 0, 47, 2, 576, 1221, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 8, 0, 0, 4, 0, 48, 0, 0, 0, 0, 92, 0, 0, 42, 506, 0, 813, 32, 7397, 19684, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2, 3;
  2, 0, 7, 15;
  2, 0, 0, 7, 5, 0, 62, 112;
  2, 0, 0, 0, 6, 0, 0, 8, 0, 2, 51, 0, 47, 2, 576, 1221;
  ...
		

Crossrefs

Row sums give A027851.
Cf. A023814, A027423 (row lengths), A079171, A079174, A079210.

Formula

A079174(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058104(n).
A023814(n) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022

A079172 Number of non-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 8, 19570, 4294963804, 298023223876769393, 10314424798490535546154887938, 256923577521058878088611477224227878265543, 6277101735386680763835789423207666416102355296268686994710, 196627050475552913618075908526912116283103450944214766927276968172610579252347
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079174 and the corresponding element of A079210.

Crossrefs

Formula

a(n) = A002489(n) - A023814(n).

Extensions

More terms from Christian G. Bower, Nov 26 2003
More terms from Jinyuan Wang, Mar 02 2020
Showing 1-10 of 20 results. Next