cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079195 Number of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2, 666, 1047436, 30517547395, 21936950639192784, 459986536544739894613595, 324518553658426726783148869733112
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A023815, A079192, A079196 (isomorphism classes), A079197, A079198.

Formula

A079192(n) + a(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079197(n,k)*A079210(n,k).
a(n) = A023813(n) - A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A079198 Number of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 50, 2352, 153002, 15876046, 7676692858
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

a(n) + A079192(n) + A079195(n) + A023815(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079200 and the corresponding element of A079210.
Since this is the number of labeled noncommutative semigroups on an n-set, a(n) = A023814(n)-A023815(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

a(5)-a(7) added by Stanislav Sykora, Apr 03 2016

A079194 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 2, 2, 0, 8, 66, 3115, 0, 1, 14, 18, 270, 467, 48260, 178888824
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)

Examples

			Triangle T(n,k) begins:
  0;
  0;
  2, 2;
  0, 8, 66, 3115;
  0, 1, 14, 18, 270, 467, 48260, 178888824;
  ...
		

Crossrefs

Row sums give A079193.

Formula

T(n,k) + A079197(n,k) + A079200(n,k) + A079201(n,k) = A079171(n,k).
A079192(n,k) = Sum_{k>=1} T(n,k)*A079210(n,k).

Extensions

a(0)=0 prepended by Andrew Howroyd, Jan 26 2022
Showing 1-6 of 6 results.