cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A023814 Number of associative binary operations on an n-set; number of labeled semigroups.

Original entry on oeis.org

1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Extensions

a(8), a(9) from Distler and Kelsey (2013). - N. J. A. Sloane, Feb 19 2013

A079173 Number of isomorphism classes of non-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 5, 3306, 178981764, 2483527537092910, 14325590003318891522247046, 50976900301814584087291487087212542367, 155682086691137947272042502251643461917498831796991599, 541851439802559836957713164869818405872834954135521300809796661279574643
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079174.

Crossrefs

Formula

a(n) = A001329(n) - A027851(n).

Extensions

More terms from Christian G. Bower, Nov 26 2003
a(8)-a(9) added using the data at A001329 and A027851 by Amiram Eldar, Jul 19 2025

A079174 Number of isomorphism classes of non-associative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 2, 3, 1, 12, 71, 3222, 0, 1, 14, 23, 270, 495, 48748, 178932213
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,60,96 (A027423, number of positive divisors of n!)
First four rows: 0; 2,3; 1,12,71,3222; 0,1,14,23,270,495,48748,178932213
The sum of each row n is given by A079173(n).

Crossrefs

Showing 1-4 of 4 results.