cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A027851 Number of nonisomorphic semigroups of order n.

Original entry on oeis.org

1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292
Offset: 0

Views

Author

Christian G. Bower, Dec 13 1997, updated Feb 19 2001

Keywords

Crossrefs

Formula

a(n) = A001423(n)*2 - A029851(n).
a(n) + A079173(n) = A001329(n).

Extensions

a(8)-a(9) from Andreas Distler, Jan 13 2011

A079172 Number of non-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 8, 19570, 4294963804, 298023223876769393, 10314424798490535546154887938, 256923577521058878088611477224227878265543, 6277101735386680763835789423207666416102355296268686994710, 196627050475552913618075908526912116283103450944214766927276968172610579252347
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the products of each element in row n of A079174 and the corresponding element of A079210.

Crossrefs

Formula

a(n) = A002489(n) - A023814(n).

Extensions

More terms from Christian G. Bower, Nov 26 2003
More terms from Jinyuan Wang, Mar 02 2020

A079174 Number of isomorphism classes of non-associative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 2, 3, 1, 12, 71, 3222, 0, 1, 14, 23, 270, 495, 48748, 178932213
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,60,96 (A027423, number of positive divisors of n!)
First four rows: 0; 2,3; 1,12,71,3222; 0,1,14,23,270,495,48748,178932213
The sum of each row n is given by A079173(n).

Crossrefs

A118581 Number of nonisomorphic semigroups of order <= n.

Original entry on oeis.org

1, 2, 7, 31, 219, 2134, 30768, 1658440, 3685688857, 105981863625149
Offset: 0

Views

Author

Jonathan Vos Post, May 07 2006

Keywords

Comments

Semigroup analog of A063756 Number of groups of order <= n. a semigroup is an algebraic structure consisting of a set S closed under an associative binary operation (and thus is an associative groupoid). Some sources require that a semigroup have an identity element (in which case semigroups are identical to monoids). Not all sources agree that S should be nonempty. This sequence assumes that a semigroup may be empty and need not have an identity.

Examples

			a(7) = 1658440 = 1 + 1 + 5 + 24 + 188 + 1915 + 28634 + 1627672.
		

Crossrefs

Formula

a(n) = Sum_{i=0..n} A027851(i). a(n) = Sum_{i=0..n} (2*A001423(i) - A029851(i)).

Extensions

a(8)-a(9) (using A027851) from Giovanni Resta, Jun 16 2016

A118601 Partial sums of A058129.

Original entry on oeis.org

1, 3, 10, 45, 273, 2510, 34069, 1703066
Offset: 1

Views

Author

Jonathan Vos Post, May 08 2006

Keywords

Crossrefs

Formula

a(n) = SUM[i=1..n] A058129(i). a(n) = SUM[i=1..n] (2*A058133(i) - A058132(i)).

Extensions

One more term from Jonathan Vos Post, Jul 20 2009
Edited by N. J. A. Sloane, Jul 25 2009

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).

A186117 Number of nonisomorphic semigroups of order n minus number of groups of order n.

Original entry on oeis.org

0, 4, 23, 186, 1914, 28632, 1627671, 3684030412, 105978177936290
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2011

Keywords

Comments

In a sense, this measures the increase in combinatorial structures available by dropping the requirement of inverses, and an identity element, in moving from the group axioms to the semigroup axioms. A semigroup is mathematical object defined for a set and a binary operator in which the multiplication operation is associative. No other restrictions are placed on a semigroup; thus a semigroup need not have an identity element and its elements need not have inverses within the semigroup. Other sequences may be derived by considering commutative semigroups and commutative groups, self-converse semigroup, counting idempotents, and the like.

Examples

			a(1) = 0 because there are unique groups and semigroups of order 1, so 1 - 1  = 0.
a(2) = 4 because there are 5 semigroups of order 2 groups and a unique group of order 2, so 5 - 1  = 4.
		

Crossrefs

Formula

a(n) = A027851(n) - A000001(n).
Showing 1-8 of 8 results.