A002489
a(n) = n^(n^2), or (n^n)^n.
Original entry on oeis.org
1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0
a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
- John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Michael Lee, Table of n, a(n) for n = 0..26 (first 16 terms from Vincenzo Librandi)
- Robert Munafo, Hyper4 Iterated Exponential Function [From _Robert Munafo_, Jan 25 2010]
- Eric Postpischil, Posting to sci.math newsgroup, May 21 1990.
- P. Rossier, Grands nombres, Elemente der Mathematik, Vol. 3 (1948), p. 20; alternative link.
- Index entries for sequences related to groupoids
A023814
Number of associative binary operations on an n-set; number of labeled semigroups.
Original entry on oeis.org
1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0
Lyle Ramshaw (ramshaw(AT)pa.dec.com)
- Alex Bailey, Martin Finn-Sell, and Robert Snocken, Subsemigroup, ideal and congruence growth of free semigroups, arXiv preprint arXiv:1409.2444 [math.GR], 2014.
- A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013.
- C. Noebauer, Home page [broken link]
- C. Noebauer, The Numbers of Small Rings
- C. Noebauer, Thesis on the enumeration of near-rings
- Eric Postpischil Posting to sci.math newsgroup, May 21 1990
- Eric Weisstein's World of Mathematics, Semigroup.
- Index entries for sequences related to semigroups
A001425
Number of commutative groupoids with n elements.
Original entry on oeis.org
1, 1, 4, 129, 43968, 254429900, 30468670170912, 91267244789189735259, 8048575431238519331999571800, 24051927835861852500932966021650993560, 2755731922430783367615449408031031255131879354330
Offset: 0
- Satoh, S.; Yama, K.; and Tokizawa, M., Semigroups of order 8, Semigroup Forum 49 (1994), 7-29. [Background]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
- Eric Postpischil Posting to sci.math newsgroup, May 21 1990
- N. J. A. Sloane, Overview of A001329, A001423-A001428, A258719, A258720.
- T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
- Index entries for sequences related to groupoids
A023815
Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.
Original entry on oeis.org
1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0
Lyle Ramshaw (ramshaw(AT)pa.dec.com)
A079195
Number of non-associative commutative closed binary operations on a set of order n.
Original entry on oeis.org
0, 0, 2, 666, 1047436, 30517547395, 21936950639192784, 459986536544739894613595, 324518553658426726783148869733112
Offset: 0
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
A079192
Number of non-associative non-commutative closed binary operations on a set of order n.
Original entry on oeis.org
0, 0, 6, 18904, 4293916368, 298023193359221998, 10314424798468598595515695154, 256923577521058877628624940679487983651948, 6277101735386680763835789098689112757675628513119817261598
Offset: 0
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
A079189
Number of anti-commutative closed binary operations (groupoids) on a set of order n.
Original entry on oeis.org
1, 1, 8, 5832, 764411904, 32000000000000000, 669462604992000000000000000, 10090701947420325348336258984797490118656, 149274165541848061518941637595308945760198454444667437056, 2832386113499265897149023834314938475799908379160975581551362823935905234944
Offset: 0
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
a(0)=1 prepended, a(8) corrected and a(9) added by
Andrew Howroyd, Jan 23 2022
A079182
Number of non-commutative closed binary operations on a set of order n.
Original entry on oeis.org
0, 8, 18954, 4293918720, 298023193359375000, 10314424798468598595531571200, 256923577521058877628624940679495660344806, 6277101735386680763835789098689112757675628661308013936640
Offset: 1
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
A346061
A(n,k) = n! * [x^n] (Sum_{j=0..n} k^(j*(j+1)/2) * x^j/j!)^(1/k) if k>0, A(n,0) = 0^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 23, 1, 0, 1, 1, 13, 199, 393, 1, 0, 1, 1, 21, 901, 17713, 13729, 1, 0, 1, 1, 31, 2861, 249337, 4572529, 943227, 1, 0, 1, 1, 43, 7291, 1900521, 264273961, 3426693463, 126433847, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 13, 21, ...
0, 1, 23, 199, 901, 2861, ...
0, 1, 393, 17713, 249337, 1900521, ...
0, 1, 13729, 4572529, 264273961, 6062674201, ...
...
-
A:= (n, k)-> `if`(k>0, n!*coeff(series(add(k^(j*(j+1)/2)*
x^j/j!, j=0..n)^(1/k), x, n+1), x, n), k^n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
A342578
a(n) = n! * [x^n] (Sum_{j>=0} n^(j*(j+1)/2) * x^j/j!)^(1/n) for n > 0, a(0) = 1.
Original entry on oeis.org
1, 1, 3, 199, 249337, 6062674201, 3653786369479951, 65709007885111803731947, 40564683796482484146182142025377, 969773549559254966290998252899999751714721, 999999990999996719397362087568018696141879478712251051, 49037072510879011742983689973641327840345400616866967292640434759551
Offset: 0
-
a:= n-> `if`(n>0, coeff(series(add(n^binomial(j+1, 2)*
x^j/j!, j=0..n)^(1/n), x, n+1), x, n)*n!, 1):
seq(a(n), n=0..12);
Showing 1-10 of 13 results.
Comments