cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A023814 Number of associative binary operations on an n-set; number of labeled semigroups.

Original entry on oeis.org

1, 1, 8, 113, 3492, 183732, 17061118, 7743056064, 148195347518186, 38447365355811944462
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Extensions

a(8), a(9) from Distler and Kelsey (2013). - N. J. A. Sloane, Feb 19 2013

A001425 Number of commutative groupoids with n elements.

Original entry on oeis.org

1, 1, 4, 129, 43968, 254429900, 30468670170912, 91267244789189735259, 8048575431238519331999571800, 24051927835861852500932966021650993560, 2755731922430783367615449408031031255131879354330
Offset: 0

Views

Author

Keywords

References

  • Satoh, S.; Yama, K.; and Tokizawa, M., Semigroups of order 8, Semigroup Forum 49 (1994), 7-29. [Background]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. Tamura, Some contributions of computation to semigroups and groupoids, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.

Crossrefs

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (sum {d|i} (d*s_d))^(i*s_i^2/2) * (sum {d|i/2} (d*s_d))^s_i or {i != j} (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)
a(n) asymptotic to (n^binomial(n+1, 2))/n! = A023813(n)/A000142(n) ~ e^n*n^binomial(n, 2) / sqrt(2*pi*n).

Extensions

More terms from Christian G. Bower Feb 15 1998 and May 15 1998. Formula Dec 03 2003.

A023815 Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.

Original entry on oeis.org

1, 1, 6, 63, 1140, 30730, 1185072, 66363206, 7150843144, 3829117403448
Offset: 0

Views

Author

Lyle Ramshaw (ramshaw(AT)pa.dec.com)

Keywords

Crossrefs

Row sums of A058167.
Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.

Formula

a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(8) from Andrew Howroyd, Jan 26 2022
a(9) from Andrew Howroyd, Feb 14 2022

A079195 Number of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 2, 666, 1047436, 30517547395, 21936950639192784, 459986536544739894613595, 324518553658426726783148869733112
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A023815, A079192, A079196 (isomorphism classes), A079197, A079198.

Formula

A079192(n) + a(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079197(n,k)*A079210(n,k).
a(n) = A023813(n) - A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079192 Number of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 6, 18904, 4293916368, 298023193359221998, 10314424798468598595515695154, 256923577521058877628624940679487983651948, 6277101735386680763835789098689112757675628513119817261598
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A002489, A023813, A023814, A023815, A079193 (isomorphism classes), A079194, A079195, A079198.

Formula

a(n) + A079195(n) + A079198(n) + A023815(n) = A002489(n).
a(n) = Sum_{k>=1} A079194(n,k)*A079210(n,k).
a(n) = A002489(n) - A023813(n) - A023814(n) + A023815(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(8) added by Andrew Howroyd, Jan 26 2022

A079189 Number of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 1, 8, 5832, 764411904, 32000000000000000, 669462604992000000000000000, 10090701947420325348336258984797490118656, 149274165541848061518941637595308945760198454444667437056, 2832386113499265897149023834314938475799908379160975581551362823935905234944
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A079186, A079190 (isomorphism classes), A079191, A079210.

Programs

  • PARI
    a(n) = (n^n)*((n^2-n)^((n^2-n)/2)) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = (n^n)*((n^2-n)^((n^2-n)/2)).
a(n) = A002489(n) - A079186(n).
a(n) = Sum_{k>=1} A079191(n,k)*A079210(n,k).
a(n) = A023813(n)*A023813(n-1).

Extensions

Edited and extended by Christian G. Bower, Dec 12 2003
a(0)=1 prepended, a(8) corrected and a(9) added by Andrew Howroyd, Jan 23 2022

A079182 Number of non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 8, 18954, 4293918720, 298023193359375000, 10314424798468598595531571200, 256923577521058877628624940679495660344806, 6277101735386680763835789098689112757675628661308013936640
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

A023813(n) + A079182(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079184 and the corresponding element of A079210.

Crossrefs

Programs

  • Mathematica
    Table[n^(n^2)-n^((n^2+n)/2), {n,1,10}] (* Geoffrey Critzer, Jan 27 2013 *)

Formula

a(n) = n^(n^2)-n^((n^2-n)/2).

Extensions

More terms from Geoffrey Critzer, Jan 27 2013

A346061 A(n,k) = n! * [x^n] (Sum_{j=0..n} k^(j*(j+1)/2) * x^j/j!)^(1/k) if k>0, A(n,0) = 0^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 23, 1, 0, 1, 1, 13, 199, 393, 1, 0, 1, 1, 21, 901, 17713, 13729, 1, 0, 1, 1, 31, 2861, 249337, 4572529, 943227, 1, 0, 1, 1, 43, 7291, 1900521, 264273961, 3426693463, 126433847, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 03 2021

Keywords

Comments

A(n,k) is odd if k >= 1 or n = 0.

Examples

			Square array A(n,k) begins:
  1, 1,     1,       1,         1,          1, ...
  0, 1,     1,       1,         1,          1, ...
  0, 1,     3,       7,        13,         21, ...
  0, 1,    23,     199,       901,       2861, ...
  0, 1,   393,   17713,    249337,    1900521, ...
  0, 1, 13729, 4572529, 264273961, 6062674201, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A000012, A178315, A178319.
Rows n=0-2 give: A000012, A057427, A002061 (for k>0).
Main diagonal gives A342578.

Programs

  • Maple
    A:= (n, k)-> `if`(k>0, n!*coeff(series(add(k^(j*(j+1)/2)*
                 x^j/j!, j=0..n)^(1/k), x, n+1), x, n), k^n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

E.g.f. of column k>0: (Sum_{j>=0} k^(j*(j+1)/2) * x^j/j!)^(1/k).
E.g.f. of column k=0: 1.
A(n,k) == 1 (mod k*(k-1)) for k >= 2 (see "general conjecture" in A178319 and link to proof by Richard Stanley above).

A342578 a(n) = n! * [x^n] (Sum_{j>=0} n^(j*(j+1)/2) * x^j/j!)^(1/n) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 3, 199, 249337, 6062674201, 3653786369479951, 65709007885111803731947, 40564683796482484146182142025377, 969773549559254966290998252899999751714721, 999999990999996719397362087568018696141879478712251051, 49037072510879011742983689973641327840345400616866967292640434759551
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2021

Keywords

Comments

All terms are odd.

Crossrefs

Main diagonal of A346061.

Programs

  • Maple
    a:= n-> `if`(n>0, coeff(series(add(n^binomial(j+1, 2)*
             x^j/j!, j=0..n)^(1/n), x, n+1), x, n)*n!, 1):
    seq(a(n), n=0..12);

Formula

a(n) == 1 (mod n*(n-1)) for n >= 2 (see "general conjecture" in A178319 and link to proof by Richard Stanley above).
a(n) ~ n^((n^2 + n - 2)/2). - Vaclav Kotesovec, Jul 15 2021
Showing 1-10 of 13 results. Next