cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A079190 Number of isomorphism classes of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 6, 996, 31857648, 266666713602640, 929809173755713574913480, 2002123402266181527640478418179038176, 3702236248557739850415303240942330019881771301360640, 7805296829528400289943264314587254996361382902046539931447903763389056
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079191.

Crossrefs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i>=1, j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (Sum_{d|i} (d*s_d))^(s_i*(i*s_i+1)/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-1)/2) or {i=j, even} (Sum_{d|i and i/d is odd} (d*s_d))^s_i * (Sum_{d|i} (d*s_d))^(i*s_i^2/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-2)/2) or {i < j} (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j) or {i > j} (-1 + Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j). [Corrected by Sean A. Irvine, Aug 03 2025]
a(n) is asymptotic to (n^binomial(n+1, 2) * (n-1)^binomial(n, 2))/n! = A079189(n)/A000142(n)

Extensions

Edited, corrected and extended with formula by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A079186 Number of non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 8, 13851, 3530555392, 266023223876953125, 9644962193498535546171949056, 246832875573638552740275218239438131202951, 6127827569844832702316847785612357470342156990019367075840, 193794664362053647720926884692597177807303542565053791345764052714030485961865
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A002489, A079187 (non-isomorphic), A079188, A079189, A079210.

Programs

  • PARI
    a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)).
a(n) = A002489(n) - A079189(n).
a(n) = Sum_{k>=1} A079178(n,k)*A079210(n,k).

Extensions

a(0)=0 prepended and terms a(5) and beyond from Andrew Howroyd, Jan 23 2022

A079191 Number of isomorphism classes of anti-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 4, 2, 2, 8, 34, 952, 2, 1, 14, 6, 211, 283, 13570, 31843561
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 1; 4,2; 2,8,34,952; 2,1,14,6,211,283,13570,31843561
A079189(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row x of this sequence is given by A079190(x).

Crossrefs

Showing 1-4 of 4 results.