A002489 a(n) = n^(n^2), or (n^n)^n.
1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0
Examples
a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
References
- John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael Lee, Table of n, a(n) for n = 0..26 (first 16 terms from Vincenzo Librandi)
- Robert Munafo, Hyper4 Iterated Exponential Function [From _Robert Munafo_, Jan 25 2010]
- Eric Postpischil, Posting to sci.math newsgroup, May 21 1990.
- P. Rossier, Grands nombres, Elemente der Mathematik, Vol. 3 (1948), p. 20; alternative link.
- Index entries for sequences related to groupoids
Crossrefs
Programs
-
Magma
[n^(n^2): n in [0..10]]; // Vincenzo Librandi, May 13 2011
-
Mathematica
Join[{1},Table[n^n^2,{n,10}]] (* Harvey P. Dale, Sep 06 2011 *)
-
PARI
a(n)=n^(n^2) \\ Charles R Greathouse IV, Nov 20 2012
Formula
a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020
Comments