cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A079187 Number of isomorphism classes of non-anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 4, 2334, 147124304, 2216860823492185, 13395780829563177947362200, 48974776899548402559651008669035131863, 151979850442580207421627199010701131897617064179661376, 534046142973031436667769900555231150876473571233474760878454735694121879
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079188.

Crossrefs

Formula

a(n) = A001329(n) - A079190(n), n > 1.

Extensions

Edited, corrected and extended by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A079189 Number of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 1, 8, 5832, 764411904, 32000000000000000, 669462604992000000000000000, 10090701947420325348336258984797490118656, 149274165541848061518941637595308945760198454444667437056, 2832386113499265897149023834314938475799908379160975581551362823935905234944
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A079186, A079190 (isomorphism classes), A079191, A079210.

Programs

  • PARI
    a(n) = (n^n)*((n^2-n)^((n^2-n)/2)) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = (n^n)*((n^2-n)^((n^2-n)/2)).
a(n) = A002489(n) - A079186(n).
a(n) = Sum_{k>=1} A079191(n,k)*A079210(n,k).
a(n) = A023813(n)*A023813(n-1).

Extensions

Edited and extended by Christian G. Bower, Dec 12 2003
a(0)=1 prepended, a(8) corrected and a(9) added by Andrew Howroyd, Jan 23 2022

A079188 Number of isomorphism classes of non-anti-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 4, 1, 4, 44, 2285, 0, 0, 0, 24, 64, 212, 35240, 147088764
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
A079176(n) is equal to the sum of the products of each element in row n of this sequence and the corresponding element of A079210.
The sum of each row n of this sequence is given by A079177(n).

Examples

			First four rows:
  0;
  0, 4;
  1, 4, 44, 2285;
  0, 0, 0, 24, 64, 212, 35240, 147088764.
		

Crossrefs

Formula

a(n) = A079171(n) - A079191(n).
Showing 1-4 of 4 results.