cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A079190 Number of isomorphism classes of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 6, 996, 31857648, 266666713602640, 929809173755713574913480, 2002123402266181527640478418179038176, 3702236248557739850415303240942330019881771301360640, 7805296829528400289943264314587254996361382902046539931447903763389056
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079191.

Crossrefs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i>=1, j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (Sum_{d|i} (d*s_d))^(s_i*(i*s_i+1)/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-1)/2) or {i=j, even} (Sum_{d|i and i/d is odd} (d*s_d))^s_i * (Sum_{d|i} (d*s_d))^(i*s_i^2/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-2)/2) or {i < j} (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j) or {i > j} (-1 + Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j). [Corrected by Sean A. Irvine, Aug 03 2025]
a(n) is asymptotic to (n^binomial(n+1, 2) * (n-1)^binomial(n, 2))/n! = A079189(n)/A000142(n)

Extensions

Edited, corrected and extended with formula by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A079186 Number of non-anti-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 8, 13851, 3530555392, 266023223876953125, 9644962193498535546171949056, 246832875573638552740275218239438131202951, 6127827569844832702316847785612357470342156990019367075840, 193794664362053647720926884692597177807303542565053791345764052714030485961865
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A002489, A079187 (non-isomorphic), A079188, A079189, A079210.

Programs

  • PARI
    a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = n^(n^2) - (n^n)*((n^2-n)^((n^2-n)/2)).
a(n) = A002489(n) - A079189(n).
a(n) = Sum_{k>=1} A079178(n,k)*A079210(n,k).

Extensions

a(0)=0 prepended and terms a(5) and beyond from Andrew Howroyd, Jan 23 2022

A079188 Number of isomorphism classes of non-anti-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 4, 1, 4, 44, 2285, 0, 0, 0, 24, 64, 212, 35240, 147088764
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
A079176(n) is equal to the sum of the products of each element in row n of this sequence and the corresponding element of A079210.
The sum of each row n of this sequence is given by A079177(n).

Examples

			First four rows:
  0;
  0, 4;
  1, 4, 44, 2285;
  0, 0, 0, 24, 64, 212, 35240, 147088764.
		

Crossrefs

Formula

a(n) = A079171(n) - A079191(n).

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Showing 1-5 of 5 results.