cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A079187 Number of isomorphism classes of non-anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 4, 2334, 147124304, 2216860823492185, 13395780829563177947362200, 48974776899548402559651008669035131863, 151979850442580207421627199010701131897617064179661376, 534046142973031436667769900555231150876473571233474760878454735694121879
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079188.

Crossrefs

Formula

a(n) = A001329(n) - A079190(n), n > 1.

Extensions

Edited, corrected and extended by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A079189 Number of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 1, 8, 5832, 764411904, 32000000000000000, 669462604992000000000000000, 10090701947420325348336258984797490118656, 149274165541848061518941637595308945760198454444667437056, 2832386113499265897149023834314938475799908379160975581551362823935905234944
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A023813, A079186, A079190 (isomorphism classes), A079191, A079210.

Programs

  • PARI
    a(n) = (n^n)*((n^2-n)^((n^2-n)/2)) \\ Andrew Howroyd, Jan 23 2022

Formula

a(n) = (n^n)*((n^2-n)^((n^2-n)/2)).
a(n) = A002489(n) - A079186(n).
a(n) = Sum_{k>=1} A079191(n,k)*A079210(n,k).
a(n) = A023813(n)*A023813(n-1).

Extensions

Edited and extended by Christian G. Bower, Dec 12 2003
a(0)=1 prepended, a(8) corrected and a(9) added by Andrew Howroyd, Jan 23 2022

A079191 Number of isomorphism classes of anti-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 4, 2, 2, 8, 34, 952, 2, 1, 14, 6, 211, 283, 13570, 31843561
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 1; 4,2; 2,8,34,952; 2,1,14,6,211,283,13570,31843561
A079189(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row x of this sequence is given by A079190(x).

Crossrefs

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Showing 1-5 of 5 results.