cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A346061 A(n,k) = n! * [x^n] (Sum_{j=0..n} k^(j*(j+1)/2) * x^j/j!)^(1/k) if k>0, A(n,0) = 0^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 23, 1, 0, 1, 1, 13, 199, 393, 1, 0, 1, 1, 21, 901, 17713, 13729, 1, 0, 1, 1, 31, 2861, 249337, 4572529, 943227, 1, 0, 1, 1, 43, 7291, 1900521, 264273961, 3426693463, 126433847, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 03 2021

Keywords

Comments

A(n,k) is odd if k >= 1 or n = 0.

Examples

			Square array A(n,k) begins:
  1, 1,     1,       1,         1,          1, ...
  0, 1,     1,       1,         1,          1, ...
  0, 1,     3,       7,        13,         21, ...
  0, 1,    23,     199,       901,       2861, ...
  0, 1,   393,   17713,    249337,    1900521, ...
  0, 1, 13729, 4572529, 264273961, 6062674201, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A000012, A178315, A178319.
Rows n=0-2 give: A000012, A057427, A002061 (for k>0).
Main diagonal gives A342578.

Programs

  • Maple
    A:= (n, k)-> `if`(k>0, n!*coeff(series(add(k^(j*(j+1)/2)*
                 x^j/j!, j=0..n)^(1/k), x, n+1), x, n), k^n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

E.g.f. of column k>0: (Sum_{j>=0} k^(j*(j+1)/2) * x^j/j!)^(1/k).
E.g.f. of column k=0: 1.
A(n,k) == 1 (mod k*(k-1)) for k >= 2 (see "general conjecture" in A178319 and link to proof by Richard Stanley above).
Showing 1-1 of 1 results.