cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A001426 Number of commutative semigroups of order n.

Original entry on oeis.org

1, 1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337
Offset: 0

Views

Author

Keywords

References

  • P. A. Grillet, Computing Finite Commutative Semigroups, Semigroup Forum 53 (1996), 140-154.
  • P. A. Grillet, Computing Finite Commutative Semigroups: Part II, Semigroup Forum 67 (2003), 159-184.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n).

Extensions

a(8) (from the Satoh et al. paper) supplied by Richard C. Schroeppel, Jul 22 2005
a(9) and a(10) from Grillet references sent by Jens Zumbragel (jzumbr(AT)math.unizh.ch), Jun 14 2006

A079196 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 0, 1, 117, 43910, 254429575, 30468670168769, 91267244789189717968, 8048575431238519331999349995, 24051927835861852500932966021639447717, 2755731922430783367615449408031031255128360423993
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079197.
Cf. A001329, A001425, A001426, A079193, A079195 (labeled case), A079199.

Formula

A079193(n) + a(n) + A079199(n) + A001426(n) = A001329(n).
a(n) = A001425(n) - A001426(n). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and a(5)-a(10) added by Andrew Howroyd, Jan 26 2022

A079197 Number of isomorphism classes of non-associative commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 107, 0, 0, 0, 5, 0, 28, 488, 43389
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
First four rows: 0; 0,1; 1,4,5,107; 0,0,0,5,0,28,488,43389
A079195(x) is equal to the sum of the products of each element in row x of this sequence and the corresponding element of A079210.
The sum of each row x of this sequence is given by A079196(x).

Crossrefs

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A079198 Number of associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 2, 50, 2352, 153002, 15876046, 7676692858
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

a(n) + A079192(n) + A079195(n) + A023815(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079200 and the corresponding element of A079210.
Since this is the number of labeled noncommutative semigroups on an n-set, a(n) = A023814(n)-A023815(n). - Stanislav Sykora, Apr 03 2016

Crossrefs

Extensions

a(5)-a(7) added by Stanislav Sykora, Apr 03 2016

A079200 Number of isomorphism classes of associative non-commutative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

0, 0, 2, 0, 2, 0, 4, 6, 2, 0, 0, 4, 5, 0, 46, 73, 2, 0, 0, 0, 4, 0, 0, 8, 0, 2, 36, 0, 43, 2, 473, 1020, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 4, 0, 36, 0, 0, 0, 0, 86, 0, 0, 38, 415, 0, 758, 32, 6682, 18426, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Number of elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!).

Examples

			Triangle T(n,k) begins:
  0;
  0;
  2, 0;
  2, 0, 4, 6;
  2, 0, 0, 4, 5, 0, 46, 73;
  2, 0, 0, 0, 4, 0, 0, 8, 0, 2, 36, 0, 43, 2, 473, 1020;
  ...
		

Crossrefs

Row sums give A079199.

Formula

A079194(n,k) + A079197(n,k) + T(n,k) + A079201(n,k) = A079171(n,k).
A079198(n) = Sum_{k>=1} T(n,k)*A079210(n,k).
T(n,k) = A079175(n,k) - A079201(n,k). - Andrew Howroyd, Jan 26 2022

Extensions

a(0)=0 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022

A118100 Number of commutative semigroups of order <= n.

Original entry on oeis.org

1, 2, 5, 17, 75, 400, 2543, 19834, 241639, 11787482, 3530717819
Offset: 0

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

A001426(n) is the number of commutative semigroups of order n. A001426(n) + A079193(n) + A079196(n) + A079199(n) = A001329(n). 2, 5, 17, 2543 and 241639 are primes.

Examples

			a(8) = 1 + 1 + 3 + 12 + 58 + 325 + 2143 + 17291 + 221805 = 241639.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001426(i).

Extensions

a(9)-a(10) added using the terms in A001426 by Miles Englezou, May 27 2025

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Showing 1-9 of 9 results.