cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001455 Number of permutations of length n with longest increasing subsequence of length 4.

Original entry on oeis.org

1, 16, 181, 1821, 17557, 167449, 1604098, 15555398, 153315999, 1538907306, 15743413076, 164161815768, 1744049683213, 18865209953045, 207591285198178, 2321616416280982, 26362085777156567, 303635722412859447, 3544040394934246209, 41881891423602685193
Offset: 4

Views

Author

Keywords

References

  • J. M. Hammersley, A few seedings of research, in Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., ed. L. M. le Cam et al., Univ. Calif. Press, 1972, Vol. I, pp. 345-394.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A047874.

Formula

Recurrence: (n-4)*(n+2)^2*(n+3)^2*(n+4)*(225*n^5 - 180*n^4 - 1713*n^3 + 1354*n^2 + 3326*n - 1604)*a(n) = (n+2)^2*(6750*n^9 - 4500*n^8 - 128025*n^7 + 28068*n^6 + 758512*n^5 - 184396*n^4 - 1719825*n^3 + 606292*n^2 + 573428*n - 274224)*a(n-1) - (n-1)*(61425*n^10 - 39915*n^9 - 1118034*n^8 + 644778*n^7 + 5929529*n^6 - 4355935*n^5 - 10322152*n^4 + 7841792*n^3 + 4333856*n^2 - 3087760*n - 58944)*a(n-2) + 2*(n-2)^2*(n-1)*(92250*n^8 - 88875*n^7 - 1380300*n^6 + 1835846*n^5 + 4241004*n^4 - 9250339*n^3 + 4259094*n^2 + 1427720*n - 1155840)*a(n-3) - 576*(n-3)^2*(n-2)^3*(n-1)*(225*n^5 + 945*n^4 - 183*n^3 - 2615*n^2 + 1300*n + 1408)*a(n-4). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 3 * 2^(4*n+9) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Mar 15 2014

Extensions

More terms from Alois P. Heinz, Jul 01 2012
Name of the sequence clarified by Vaclav Kotesovec, Mar 18 2014