A001484 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^6 in powers of x.
1, -6, 15, -20, 9, 24, -65, 90, -75, 6, 90, -180, 220, -180, 66, 110, -264, 360, -365, 264, -66, -178, 375, -510, 496, -414, 180, 60, -330, 570, -622, 582, -390, 220, 96, -300, 621, -630, 705, -492, 300, 0, -235, 420, -570, 594, -735, 420, -420, -120, 219, -586, 360
Offset: 6
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 6..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Programs
-
Magma
m:=102; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^6 )); // G. C. Greubel, Sep 04 2023 -
Maple
N:= 100: S:= series((mul(1-(-x)^j,j=1..N)-1)^6,x,N+1): seq(coeff(S,x,j),j=6..N); # Robert Israel, Feb 05 2019
-
Mathematica
Drop[CoefficientList[Series[(QPochhammer[-x] -1)^6, {x,0,102}], x], 6] (* G. C. Greubel, Sep 04 2023 *)
-
PARI
my(N=70,x='x+O('x^N)); Vec((eta(-x)-1)^6) \\ Joerg Arndt, Sep 04 2023
-
SageMath
m=100; k=6; def f(k,x): return (-1 + product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1,m+2) ) )^k def A001484_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A001484_list(m); a[k:] # G. C. Greubel, Sep 04 2023
Formula
a(n) = [x^n] ( QPochhammer(-x) - 1 )^6. - G. C. Greubel, Sep 04 2023
Extensions
Edited by Robert Israel, Feb 05 2019