cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001484 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^6 in powers of x.

Original entry on oeis.org

1, -6, 15, -20, 9, 24, -65, 90, -75, 6, 90, -180, 220, -180, 66, 110, -264, 360, -365, 264, -66, -178, 375, -510, 496, -414, 180, 60, -330, 570, -622, 582, -390, 220, 96, -300, 621, -630, 705, -492, 300, 0, -235, 420, -570, 594, -735, 420, -420, -120, 219, -586, 360
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=102;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^6 )); // G. C. Greubel, Sep 04 2023
    
  • Maple
    N:= 100:
    S:= series((mul(1-(-x)^j,j=1..N)-1)^6,x,N+1):
    seq(coeff(S,x,j),j=6..N); # Robert Israel, Feb 05 2019
  • Mathematica
    Drop[CoefficientList[Series[(QPochhammer[-x] -1)^6, {x,0,102}], x], 6] (* G. C. Greubel, Sep 04 2023 *)
  • PARI
    my(N=70,x='x+O('x^N)); Vec((eta(-x)-1)^6) \\ Joerg Arndt, Sep 04 2023
  • SageMath
    m=100; k=6;
    def f(k,x): return (-1 + product( (1+x^j)*(1-x^(2*j))/(1+x^(2*j)) for j in range(1,m+2) ) )^k
    def A001484_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A001484_list(m); a[k:] # G. C. Greubel, Sep 04 2023
    

Formula

a(n) = [x^n] ( QPochhammer(-x) - 1 )^6. - G. C. Greubel, Sep 04 2023

Extensions

Edited by Robert Israel, Feb 05 2019