A001626 Number of 3-line Latin rectangles.
0, 0, 2, 36, 840, 29680, 1429920, 90318144, 7237943552, 717442928640, 86171602072320, 12331048749268480, 2072725870491859968, 404352831489304049664, 90605920564322676531200, 23110943021722435879157760, 6657484407493222296916131840
Offset: 1
Keywords
References
- S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.
- S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.
- S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]
- Index entries for sequences related to Latin squares and rectangles
Crossrefs
Cf. A000186.
Formula
a(1) = 0, a(n) = A000186(n) + 2*(n-1)*a(n-1), n > 1. - Sean A. Irvine, Sep 25 2015
Extensions
More terms from Sean A. Irvine, Sep 25 2015