cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001668 Number of self-avoiding n-step walks on honeycomb lattice.

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 90, 174, 336, 648, 1218, 2328, 4416, 8388, 15780, 29892, 56268, 106200, 199350, 375504, 704304, 1323996, 2479692, 4654464, 8710212, 16328220, 30526374, 57161568, 106794084, 199788408, 372996450, 697217994, 1300954248
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006851.

Programs

  • Maple
    a:= proc(n) local v, b;
          if n<2 then return 1 +2*n fi;
          v:= proc() false end: v(0, 0), v(1, 0):= true$2;
          b:= proc(n, x, y) local c;
                if v(x, y) then 0
              elif n=0 then 1
              else v(x, y):= true;
                   c:= b(n-1, x+1, y) + b(n-1, x-1, y) +
                       b(n-1, x, y-1+2*((x+y) mod 2));
                   v(x, y):= false; c
                fi
              end;
          6*b(n-2, 1, 1)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 07 2011
  • Mathematica
    a[n_] := a[n] = Module[{v, b}, If[n < 2 , Return[1+2*n]]; v[0, 0] = v[1, 0] = True; v[, ] = False; b[m_, x_, y_] := Module[{c}, If[v[x, y], 0 , If[ m == 0 , 1, v[x, y] = True; c = b[m-1, x+1, y] + b[m-1, x-1, y] + b[m-1, x, y-1 + 2*Mod[x+y, 2]]; v[x, y] = False; c]]]; 6*b[n-2, 1, 1]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 32}] (* Jean-François Alcover, Nov 25 2013, translated from Alois P. Heinz's Maple program *)

Formula

mu^n <= a(n) <= mu^n alpha^sqrt(n) for mu = A179260 and some alpha. It has been conjectured that a(n) ~ mu^n * n^(11/32). - Charles R Greathouse IV, Nov 08 2013

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 06 2004