A001695 a(n) = H_n(2,n) where H_n is the n-th hyperoperator.
1, 3, 4, 8, 65536
Offset: 0
Examples
a(0) = H_0(2,0) = 0+1 = 1; a(1) = H_1(2,1) = 2+1 = 3; a(2) = H_2(2,2) = 2*2 = 4; a(3) = H_3(2,3) = 2^3 = 8; a(4) = H_4(2,4) = 2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65536; a(5) = H_5(2,5) = 2^^^5 = 2^^2^^2^^2^^2 = 2^^2^^2^^4 = 2^^2^^65536 = ....
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
- R. C. Buck, Mathematical induction and recursive definitions, Amer. Math. Monthly, 70 (1963), 128-135.
- Y. Sundblad, The Ackermann function. A theoretical, computational and formula manipulative study, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 107-119.
- Eric Weisstein's World of Mathematics, Ackermann Function.
- R. G. Wilson v, Letter to N. J. A. Sloane, Jan. 1989
- R. G. Wilson v, Letters to BYTE Magazine (1988) and N. J. A. Sloane (1994)
- Index entries for sequences related to Ackermann function
Formula
Alternative formula:
With f(x,y)=
{y+1 if x=0
{0 if x=2, y=0
{1 if x>2, y=0
{2 if x=1, y=0
{f(x-1,f(x,y-1)) otherwise
a(n)= f(n,n);
Extensions
Example, formula and Hyperoperator notation by Natan Arie Consigli with Danny Rorabaugh's help, Oct 25 2015
Comments