A001722 Generalized Stirling numbers.
1, 18, 251, 3325, 44524, 617624, 8969148, 136954044, 2201931576, 37272482280, 663644774880, 12413008539360, 243533741849280, 5003753991174720, 107497490419296000, 2410964056571616000, 56366432074677312000, 1371711629236971456000, 34699437370290760704000
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
Programs
-
Mathematica
Table[Sum[(-1)^(n + k)*Binomial[k + 2, 2]*5^k*StirlingS1[n + 2, k + 2], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
Formula
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+2, 2)*5^k*Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,5)|, for n >= 2. - Milan Janjic, Dec 21 2008
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments