A001759 Number of permutations of [n] with n-3 sequences.
2, 28, 236, 1852, 14622, 119964, 1034992, 9434444, 90968602, 927367340, 9982234068, 113261721276, 1352111669942, 16950982295356, 222752212005464, 3062768908594348, 43987314357078642, 658804420084315212
Offset: 4
Keywords
Examples
2*x^4 + 28*x^5 + 236*x^6 + 1852*x^7 + 14622*x^8 + 119964*x^9 + 1034992*x^10 + ... . - _Michael Somos_, Aug 28 2012
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Programs
-
Maple
seq(coeff(series(2*tan(t)*sec(t)^2+4*sec(t)+5*tan(t)-4*sec(t)*tan(t)-1-4*sec (t)^2-t*sec(t)*tan(t)+2*sec(t)^3-t*sec(t)^2,t,30),t,i)*i!,i=4..24); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
Formula
From Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001: (Start)
E.g.f.: (1/2)*u(x)^3+(11/2)*u(x)-2*u(x)^2-(x/2)*u(x)^2+x/2, where u(x)=sec(x)+tan(x), n>3.
a(n) ~ 2n!(2/Pi)^(n+1)((4n^2+12n+8)/(Pi^2)-8(n+1)/Pi+5-n). (End)
E.g.f.: (5 * cos(x) + 2*x * sin(x) - 3*x - 4) / (1 - sin(x)) + (1 + sin(x)) / ((1 - sin(x)) * cos(x)) - 2. - Michael Somos, Aug 28 2012
Extensions
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
Offset corrected by N. J. A. Sloane, Aug 27 2012 at the suggestion of Michael Somos