cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001762 Number of labeled n-vertex dissections of a ball.

Original entry on oeis.org

1, 1, 10, 180, 4620, 152880, 6168960, 293025600, 15990004800, 984647664000, 67493121696000, 5094263446272000, 419688934689024000, 37465564582397952000, 3601861863990534144000, 370962724717928318976000, 40744403224500159055872000
Offset: 3

Views

Author

Keywords

Comments

This is the number of labeled Apollonian networks (planar 3-trees). - Allan Bickle, Feb 20 2024

Examples

			There is one maximal planar graph with 4 vertices, and one way to label it, so a(4) = 1.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    using Combinatorics
    a(n) = n < 4 ? 1 : binomial(BigInt(n),3)*factorial(BigInt(3*n-9))÷factorial(BigInt(2*n-4))
    print([a(n) for n in 3:28]) # Paul Muljadi, Mar 27 2024
  • Mathematica
    Join[{1}, Table[Binomial[n, 3]*(3*n - 9)!/(2*n - 4)!, {n, 4, 25}]] (* T. D. Noe, Aug 10 2012 *)
  • Python
    from math import factorial
    from sympy import binomial
    def a(n):
        if n < 4:
            return 1
        else:
            return binomial(n, 3) * factorial(3*n-9) // factorial(2*n-4)
    print([a(n) for n in range(3, 21)]) # Paul Muljadi, Mar 05 2024
    

Formula

a(n) = binomial(n,3)*(3*n-9)!/(2*n-4)!, n >= 4; a(3) = 1.
a(n) ~ 3^(3*n - 19/2) * n^(n-2) / (2^(2*n - 5/2) * exp(n)). - Vaclav Kotesovec, Mar 14 2024

Extensions

More terms from Wolfdieter Lang
Name clarified by Andrey Zabolotskiy, Mar 15 2024