A001774 Numbers k such that 17*2^k - 1 is prime.
2, 4, 6, 16, 20, 36, 54, 60, 96, 124, 150, 252, 356, 460, 612, 654, 664, 698, 702, 972, 1188, 1312, 3062, 4214, 4288, 5280, 9100, 20262, 21676, 24828, 46144, 62148, 79974, 117784, 211464, 310744, 310754, 429318, 601158, 605394
Offset: 1
References
- H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Wilfrid Keller, List of primes k.2^n - 1 for k < 300
- Kosmaj, Riesel list k<300.
- H. C. Williams and C. R. Zarnke, A report on prime numbers of the forms M = (6a+1)*2^(2m-1)-1 and (6a-1)*2^(2m)-1, Math. Comp., 22 (1968), 420-422.
- Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008