A001841 Related to Zarankiewicz's problem.
3, 5, 10, 14, 21, 26, 36, 43, 55, 64, 78, 88, 105, 117, 136, 150, 171, 186, 210, 227, 253, 272, 300, 320, 351, 373, 406, 430, 465, 490, 528, 555, 595, 624, 666, 696, 741
Offset: 3
Keywords
References
- R. K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Cerkan, Table of n, a(n) for n = 3..10000
- R. K. Guy, A problem of Zarankiewicz, Research Paper No. 12, Dept. of Math., Univ. Calgary, Jan. 1967. See p. 9 column t(3,m). [Annotated and scanned copy, with permission]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Programs
-
Maple
A001841:=-(2*z**4+z**5+2*z**2+2*z**3+2*z+3)/(z**2-z+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
Comments