cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001843 The coding-theoretic function A(n,4,4).

Original entry on oeis.org

1, 1, 3, 7, 14, 18, 30, 35, 51, 65, 91, 105, 140, 157, 198, 228, 285, 315, 385, 419, 498, 550, 650, 702, 819, 877, 1005, 1085, 1240, 1320, 1496, 1583, 1773, 1887, 2109, 2223, 2470, 2593, 2856, 3010, 3311, 3465, 3795, 3959, 4308, 4508, 4900, 5100, 5525, 5737
Offset: 4

Views

Author

Keywords

Comments

Maximal number of 4-subsets of an n-set such that any two subsets meet in at most 2 points.

Examples

			For n=7 use all seven cyclic shifts of 1110100.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • R. K. Guy, A problem of Zarankiewicz, in P. ErdÅ‘s and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A001843 :=  proc(n)
        floor((n-1)/3* floor((n-2)/2) ) ;
        if modp(n,6) = 0 then
            floor(n*(%-1)/4) ;
        else
            floor(n*%/4) ;
        end if;
    end proc:
    seq(A001843(n),n=4..80) ; # R. J. Mathar, Oct 01 2021
  • Python
    [((n-2)//2*(n-1)//3 - int(n%6 == 0)) * n // 4 for n in range(4, 50)]
    # Andrey Zabolotskiy, Jan 28 2021

Formula

See Theorem 1.2 of Bao and Ji, 2015 (Theorem 4.9 in the arXiv preprint, but note the missing parentheses for J(n,4,4) on page 1).
a(n)= +a(n-1) +a(n-2) -a(n-3) +a(n-6) -a(n-7) -a(n-8) +a(n-9) +a(n-12) -a(n-13) -a(n-14) +a(n-15) -a(n-18) +a(n-19) +a(n-20) -a(n-21). - R. J. Mathar, Oct 01 2021

Extensions

Revised by N. J. A. Sloane and Andries E. Brouwer, May 08 2010
Terms a(23) and beyond added, entry edited by Andrey Zabolotskiy, Jan 28 2021