cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001839 The coding-theoretic function A(n,4,3).

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 8, 12, 13, 17, 20, 26, 28, 35, 37, 44, 48, 57, 60, 70, 73, 83, 88, 100, 104, 117, 121, 134, 140, 155, 160, 176, 181, 197, 204, 222, 228, 247, 253, 272, 280, 301, 308, 330, 337, 359, 368, 392, 400, 425, 433, 458, 468, 495, 504, 532, 541, 569, 580, 610, 620, 651, 661, 692, 704, 737, 748, 782, 793
Offset: 1

Views

Author

Keywords

Comments

Maximum number of edge-disjoint K_3's in a K_n.
Maximum number of clauses in a reduced 1 in 3 SAT instance. Given N items taken three at a time, what is the maximum number of combinations such that no two combinations share more than one item in common. There are reduction rules for 1 in 3 SAT that guarantee no two clauses share more than one variable in common. a(n) is the maximum number of clauses a reduced instance with n variables can have. Example: a(6)=4: (a,b,c)(a,d,e)(b,d,f)(c,e,f). - Russell Easterly, Oct 02 2005
Agrees with independence number of the n-tetrahedral graph for at least a(6)-a(12). - Eric W. Weisstein, Jun 14 2017 and Jul 24 2017
Packing number D(n,3,2). - Rob Pratt, Feb 26 2024

Examples

			Codes illustrating A(4,3,4) = a(3) = 1, A(5,3,4) = a(5) = 2 and A(6,3,4) = a(6) = 4 are:
   1110...11100..111000
   .......10011..100110
   ..............010101
   ..............001011
		

References

  • P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Floor[n Floor[(n - 1)/2]/3] - Boole[Mod[n, 6] == 5], {n, 20}] (* Eric W. Weisstein, Jul 13 2017 *)
    Table[(6 n^2 - 9 n - 10 - 3 (-1)^n (n - 2) - 6 Cos[n Pi/3] + 10 Cos[2 n Pi/3] + 10 Sqrt[3] Sin[n Pi/3] + 6 Sqrt[3] Sin[2 n Pi/3])/36, {n, 20}]  (* Eric W. Weisstein, Jul 13 2017 *)
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 1, 1, 2, 4, 7,
       8, 12}, 20] (* Eric W. Weisstein, Jul 13 2017 *)
    CoefficientList[Series[(x^2 (-1 - 2 x^3 - 2 x^4 + x^5))/((-1 + x)^3 (1 + x)^2 (1 - x + x^2) (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 13 2017 *)

Formula

Known exactly for all n - see Theorem 4 of Brouwer et al. (1990): A(n, 4, 3) = floor((n/3)*floor((n-1)/2))-1 if n is congruent to 5 (mod 6) and A(n, 4, 3) = floor((n/3)*floor((n-1)/2)) if n is not congruent to 5 (mod 6). - Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - Eric W. Weisstein, Jul 13 2017
G.f.: x^3*(x^5-2*x^4-2*x^3-1) / ((x-1)^3*(x+1)^2*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Sep 21 2013

Extensions

More terms from Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004

A005864 The coding-theoretic function A(n,4).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 8, 16, 20, 40, 72, 144, 256, 512, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

Since A(n,3) = A(n+1,4), A(n,3) gives essentially the same sequence.
The next term a(17) is in the range 2816-3276.
Let T_n be the set of SDS-maps of sequential dynamical systems defined over the complete graph K_n in which all vertices have the same vertex function (defined using a set of two possible vertex states). Then a(n) is the maximum number of period-2 orbits that a function in T_n can have. - Colin Defant, Sep 15 2015
Since the n-halved cube graph is isomorphic to (or, if you prefer, defined as) the graph with binary sequences of length n-1 as nodes and edges between pairs of sequences that differ in at most two positions, the independence number of the n-halved cube graph is A(n-1,3) = a(n). - Pontus von Brömssen, Dec 12 2018
a(2^k) = A(2^k-1, 3) = 2^(2^k-k-1) because the hypercube Q(2^k-1) can be perfectly packed with radius-1 spheres, corresponding to a Hamming(2^k-1, 2^k-k-1) code. - Yifan Xie, May 06 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005865: A(n,6) ~ A(n,5), A005866: A(n,8) ~ A(n,7).
Cf. A001839: A(n,4,3), A001843: A(n,4,4), A169763: A(n,4,5).

A351100 Maximum number of 4-subsets of an n-set such that every 3-subset is covered at most twice.

Original entry on oeis.org

2, 5, 9, 15, 28, 40, 60, 80, 108, 143, 182, 225, 280, 340, 405
Offset: 4

Views

Author

Jeremy Tan, Jan 31 2022

Keywords

Comments

Maximum number of K_4^3's that can be packed in a doubled K_n^3, where K_n^m is the complete m-uniform hypergraph on n vertices.

Examples

			a(6) = 9 because of the following optimal collection of 4-subsets:
  1 2 3 4
  2 3 4 5
  3 4 5 6
  4 5 6 1
  5 6 1 2
  6 1 2 3
  1 2 4 5
  2 3 5 6
  3 4 6 1
		

Crossrefs

Cf. A001839-A001843 for other packing sequences discussed in Richard K. Guy's paper.

Formula

a(n) >= 2*A001843(n). Equality holds if n = 6k+2 or 6k+4 (Hanani).
Showing 1-3 of 3 results.