A005866
The coding-theoretic function A(n,8).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 16, 32, 36, 64, 128, 256, 512, 1024, 2048, 4096
Offset: 1
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 674.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Brouwer, Small binary codes: Table of general binary codes, personal web page.
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- Patric R. J. Östergård, On the Size of Optimal Three-Error-Correcting Binary Codes of Length 16, IEEE Transactions on Information Theory, Volume 57, Issue 10, Oct. 2011.
- N. J. A. Sloane and D. S. Whitehead, A New Family of Single-Error Correcting Codes [Shows a(18) >= 36.]
- Eric Weisstein's World of Mathematics, Error-Correcting Code.
- Index entries for sequences related to A(n,d)
Cf.
A005851: A(n,8,5),
A005852: A(n,8,6),
A005853: A(n,8,7),
A004043: A(n,8,8).
A005865
The coding-theoretic function A(n,6).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 2, 4, 6, 12, 24, 32, 64, 128, 256
Offset: 1
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Brouwer, Tables of general binary codes
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- M. Grassl, Bounds on the minimum distance of linear codes
- Moshe Milshtein, A new two-error-correcting binary code of length 16, Cryptography and Communications (2019).
- Eric Weisstein's World of Mathematics, Error-Correcting Code.
- Index entries for sequences related to A(n,d)
A230380
The size of an optimal binary code of length n and edit distance 4.
Original entry on oeis.org
1, 2, 2, 4, 5, 9, 13, 21
Offset: 3
A355226
Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 8, 4, 1, 16, 40, 1, 32, 256, 480, 120, 1, 64, 1344, 11200, 36400, 40320, 13440, 1920, 240, 1, 128, 6336, 156800, 2104480, 15644160, 63672000, 136970880, 147748560, 76396800, 21087360, 4273920, 840000, 161280, 28800, 3840, 240
Offset: 1
Triangle begins:
k = 0 1 2
n = 1: 1, 1
n = 2: 1, 2
n = 3: 1, 4
n = 4: 1, 8, 4
n = 5: 1, 16, 40
The 4-halved cube graph has independence polynomial 1 + 8*t + 4*t^2.
-
from sage.graphs.independent_sets import IndependentSets
from collections import Counter
def row(n):
if n == 1:
g = graphs.CompleteGraph(1)
else:
g = graphs.HalfCube(n)
setCounts = Counter()
for Iset in IndependentSets(g):
setCounts[len(Iset)] += 1
outList = [0] * len(setCounts)
for n in range(0,len(setCounts)):
outList[n] = setCounts[n]
return outList
A355558
The independence polynomial of the n-halved cube graph evaluated at -1.
Original entry on oeis.org
0, -1, -3, -3, 25, -135, -2079, 1879969
Offset: 1
Row 5 of A355226 is 1, 16, 40. This means the 5-halved cube graph has independence polynomial 1 + 16*t + 40*t^2. Taking the alternating row sum of row 5, or evaluating the polynomial at -1, gives us 1 - 16 + 40 = 25 = a(5).
Showing 1-5 of 5 results.
Comments