A005864
The coding-theoretic function A(n,4).
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 8, 16, 20, 40, 72, 144, 256, 512, 1024, 2048
Offset: 1
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Brouwer, Tables of general binary codes
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- Colin Defant, Binary Codes and Period-2 Orbits of Sequential Dynamical Systems, arXiv:1509.03907 [math.CO], 2015.
- Moshe Milshtein, A new binary code of length 16 and minimum distance 3, Information Processing Letters 115.12 (2015): 975-976.
- Patric R. J. Östergård (patric.ostergard(AT)hut.fi), T. Baicheva and E. Kolev, Optimal binary one-error-correcting codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory, 45 (1999), 1229-1231.
- A. M. Romanov, New binary codes with minimal distance 3, Problemy Peredachi Informatsii, 19 (1983) 101-102.
- Eric Weisstein's World of Mathematics, Error-Correcting Code
- Eric Weisstein's World of Mathematics, Halved Cube Graph
- Eric Weisstein's World of Mathematics, Independence Number
- Wikipedia, Halved cube graph
- Index entries for sequences related to A(n,d)
A005866
The coding-theoretic function A(n,8).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 16, 32, 36, 64, 128, 256, 512, 1024, 2048, 4096
Offset: 1
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 674.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Brouwer, Small binary codes: Table of general binary codes, personal web page.
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- Patric R. J. Östergård, On the Size of Optimal Three-Error-Correcting Binary Codes of Length 16, IEEE Transactions on Information Theory, Volume 57, Issue 10, Oct. 2011.
- N. J. A. Sloane and D. S. Whitehead, A New Family of Single-Error Correcting Codes [Shows a(18) >= 36.]
- Eric Weisstein's World of Mathematics, Error-Correcting Code.
- Index entries for sequences related to A(n,d)
Cf.
A005851: A(n,8,5),
A005852: A(n,8,6),
A005853: A(n,8,7),
A004043: A(n,8,8).
A169761
Consider binary linear [N,K,D] codes with D=6 and redundancy R = N-K = n; a(n) = maximal value of N.
Original entry on oeis.org
6, 7, 9, 12, 18, 24, 34
Offset: 5
a(9) = 18 corresponds to the [18,9,6] extended quadratic residue code.
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978.
Showing 1-3 of 3 results.
Comments