A005864 The coding-theoretic function A(n,4).
1, 1, 1, 2, 2, 4, 8, 16, 20, 40, 72, 144, 256, 512, 1024, 2048
Offset: 1
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- A. E. Brouwer, Tables of general binary codes
- A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
- Colin Defant, Binary Codes and Period-2 Orbits of Sequential Dynamical Systems, arXiv:1509.03907 [math.CO], 2015.
- Moshe Milshtein, A new binary code of length 16 and minimum distance 3, Information Processing Letters 115.12 (2015): 975-976.
- Patric R. J. Östergård (patric.ostergard(AT)hut.fi), T. Baicheva and E. Kolev, Optimal binary one-error-correcting codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory, 45 (1999), 1229-1231.
- A. M. Romanov, New binary codes with minimal distance 3, Problemy Peredachi Informatsii, 19 (1983) 101-102.
- Eric Weisstein's World of Mathematics, Error-Correcting Code
- Eric Weisstein's World of Mathematics, Halved Cube Graph
- Eric Weisstein's World of Mathematics, Independence Number
- Wikipedia, Halved cube graph
- Index entries for sequences related to A(n,d)
Comments