cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005864 The coding-theoretic function A(n,4).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 8, 16, 20, 40, 72, 144, 256, 512, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

Since A(n,3) = A(n+1,4), A(n,3) gives essentially the same sequence.
The next term a(17) is in the range 2816-3276.
Let T_n be the set of SDS-maps of sequential dynamical systems defined over the complete graph K_n in which all vertices have the same vertex function (defined using a set of two possible vertex states). Then a(n) is the maximum number of period-2 orbits that a function in T_n can have. - Colin Defant, Sep 15 2015
Since the n-halved cube graph is isomorphic to (or, if you prefer, defined as) the graph with binary sequences of length n-1 as nodes and edges between pairs of sequences that differ in at most two positions, the independence number of the n-halved cube graph is A(n-1,3) = a(n). - Pontus von Brömssen, Dec 12 2018
a(2^k) = A(2^k-1, 3) = 2^(2^k-k-1) because the hypercube Q(2^k-1) can be perfectly packed with radius-1 spheres, corresponding to a Hamming(2^k-1, 2^k-k-1) code. - Yifan Xie, May 06 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005865: A(n,6) ~ A(n,5), A005866: A(n,8) ~ A(n,7).
Cf. A001839: A(n,4,3), A001843: A(n,4,4), A169763: A(n,4,5).

A004043 The coding-theoretic function A(n,8,8).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 7, 15, 30, 34
Offset: 8

Views

Author

Keywords

Comments

According to Brouwer's web site, 46 <= a(18) <= 49, and a(19..24) = (78, 130, 210, 330, 506, 759). This matches A030069. - M. F. Hasler, May 25 2017

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 411.

Crossrefs

Cf. A005851: A(n,8,5), A005852: A(n,8,6), A005853: A(n,8,7).
Cf. A005866: A(n,8); A030069 (size of d=8, w=8 lexicographic codes).

A005851 The coding-theoretic function A(n,8,5).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 9, 12, 16, 21, 21, 23, 24, 30, 30
Offset: 5

Views

Author

Keywords

Comments

Packing number D(n,5,2). Maximum number of edge-disjoint K_5's in a K_n. - Rob Pratt, Feb 26 2024

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005852: A(n,8,6), A005853: A(n,8,7), A004043: A(n,8,8).
Cf. A005866: A(n,8).

Extensions

The version in the Encyclopedia of Integer Sequences had 1 instead of 2 at n=9.

A005852 The coding-theoretic function A(n,8,6).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 7, 10, 16, 17, 21, 28, 40, 56, 77
Offset: 6

Views

Author

Keywords

References

  • A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005851: A(n,8,5), this: A(n,8,6), A005853: A(n,8,7), A004043: A(n,8,8).
Cf. A005866: A(n,8).

A005865 The coding-theoretic function A(n,6).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 4, 6, 12, 24, 32, 64, 128, 256
Offset: 1

Views

Author

Keywords

Comments

Since A(n,5) = A(n+1,6), A(n,5) gives essentially the same sequence.
The next term is known only to be in the range 258-340. - Moshe Milshtein, Apr 24 2019

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 674.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Showing 1-5 of 5 results.