cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001876 Number of divisors of n of the form 5k+1; a(0)=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

For numbers of divisors of n of the form 5k+i (i=1, 2, 3, 4) see: this sequence, A001877, A001878, A001899.

Programs

  • Mathematica
    CoefficientList[ Series[ Together[ Sum[ x^n/(1 - x^(5n)), {n, 110}]], {x, 0, 110}], x] (* Robert G. Wilson v, Jan 31 2011 *)
    a[n_] := DivisorSum[n, 1 &, Mod[#, 5] == 1 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    a(n) = if(n==0,0, sumdiv(n, d, (d % 5) == 1)); \\ Michel Marcus, Feb 25 2021

Formula

G.f.: Sum_{n>=0} x^(5n+1)/(1-x^(5n+1)).
G.f.: Sum_{n>=1} x^n/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,5) - (1 - gamma)/5 = A256779 - (1 - A001620)/5 = 0.651363... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023