cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001901 Successive numerators of Wallis's approximation to Pi/2 (reduced).

Original entry on oeis.org

1, 2, 4, 16, 64, 128, 256, 2048, 16384, 32768, 65536, 262144, 1048576, 2097152, 4194304, 67108864, 1073741824, 2147483648, 4294967296, 17179869184, 68719476736, 137438953472, 274877906944, 2199023255552
Offset: 0

Views

Author

Keywords

Comments

If p is prime, then a(p-2) == - A001902(p-2) (mod p). Cf. A064169 (third comment) and my formula here. Such pseudoprimes are 1467, 7831, ... Primes p such that a(p-2) == - A001902(p-2) (mod p^2) are 5, 45827, ... Cf. A355959, see also A330719 (third comment). - Thomas Ordowski, Oct 19 2024

Examples

			From _Wolfdieter Lang_, Dec 07 2017: (Start)
The Wallis numerators (N) and denominators (D) with partial products A(n) = A001900(n) and B(n) = A000246(n+1) in unreduced form, and a(n) and b(n) = A001902(n) in reduced form.
n, k:     0  1  2  3  4   5    6     7      8        9       10 ...
N(k):     1  2  2  4  4   6    6     8      8       10       10 ...
D(k):     1  1  3  3  5   5    7     7      9        9        9 ...
A(n):     1  2  4 16 64 384 2304 18432 147456  1474560 14745600 ...
B(n):     1  1  3  9 45 225 1575 11025  99225   893025  9823275 ...
a(n):     1  2  4 16 64 128  256  2048  16384    32768    65536 ...
b(n):     1  1  3  9 45  75  175  1225  11025    19845    43659 ...
n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = numerator(384/225) = numerator(128/75) = 128. (End)
		

References

  • H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.

Crossrefs

Denominators are A001902. Subsequence of A000079.

Programs

  • Mathematica
    a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := ((n - 1)!!^2*(n + 1))/n!!^2; Table[a[n] // Numerator, {n, 0, 23}] (* Jean-François Alcover, Jun 19 2013 *)

Formula

(2*2*4*4*6*6*8*8*...*2n*2n*...)/(1*3*3*5*5*7*7*9*...*(2n-1)*(2n+1)*...) for n >= 1.
From Wolfdieter Lang, Dec 07 2017: (Start)
1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * ...; partial products (reduced). Here the numerators with offset 0.
a(n) = numerator(W(n)), for n >= 0, with W(n) = Product_{k=0..n} N(k)/D(k) (reduced), with N(k) = 2*floor((k+1)/2) for k >= 1 and N(0) = 1, and D(k) = 2*floor(k/2) + 1, for k >= 0. (End)
a(n) is the numerator of the continued fraction [1;1,1/2,1/3,...,1/n]. - Thomas Ordowski, Oct 19 2024