cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067059 Square array read by antidiagonals of partitions which half fill an n*k box, i.e., partitions of floor(nk/2) or ceiling(nk/2) into up to n positive integers, each no more than k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 6, 8, 6, 4, 1, 1, 1, 1, 4, 8, 12, 12, 8, 4, 1, 1, 1, 1, 5, 10, 18, 20, 18, 10, 5, 1, 1, 1, 1, 5, 13, 24, 32, 32, 24, 13, 5, 1, 1, 1, 1, 6, 15, 33, 49, 58, 49, 33, 15, 6, 1, 1, 1, 1, 6
Offset: 0

Views

Author

Henry Bottomley, Feb 17 2002

Keywords

Comments

The number of partitions of m into up to n positive integers each no more than k is maximized for given n and k by m=floor(nk/2) or ceiling(nk/2) (and possibly some other values).

Examples

			Rows start:
1, 1, 1, 1, 1, 1, ...;
1, 1, 1, 1, 1, 1, ...;
1, 1, 2, 2, 3, 3, ...;
1, 1, 2, 3, 5, 6, ...;
1, 1, 3, 5, 8, 12, ...; etc.
T(4,5)=12 since 10 can be partitioned into
5+5, 5+4+1, 5+3+2, 5+3+1+1, 5+2+2+1, 4+4+2, 4+3+3,
4+4+1+1, 4+3+2+1, 4+2+2+2, 3+3+3+1, and 3+3+2+2.
		

Crossrefs

As this is symmetric, rows and columns each include A000012 twice, A008619, A001971, A001973, A001975, A001977, A001979 and A001981. Diagonal is A029895. T(n, n*(n-1)) is the magic series A052456.

Programs

  • Maple
    A067059 := proc(n,k)
        local m,a1,a2 ;
        a1 := 0 ;
        m := floor(n*k/2) ;
        for L in combinat[partition](m) do
            if nops(L) <= n then
                if max(op(L)) <= k then
                    a1 := a1+1 ;
                end if ;
            end if;
        end do:
        a2 := 0 ;
        m := ceil(n*k/2) ;
        for L in combinat[partition](m) do
            if nops(L) <= n then
                if max(op(L)) <= k then
                    a2 := a2+1 ;
                end if ;
            end if;
        end do:
        max(a1,a2) ;
    end proc:
    for d from 0 to 12 do
        for k from 0 to d do
            printf("%d,",A067059(d-k,k)) ;
        end do:
    end do: # R. J. Mathar, Nov 13 2016
  • Mathematica
    t[n_, k_] := Length[ IntegerPartitions[ Floor[n*k/2], n, Range[k]]]; Flatten[ Table[ t[n-k , k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jan 02 2012 *)
  • Sage
    def A067059(n, k):
        return Partitions((n*k)//2, max_length=n, max_part=k).cardinality()
    for n in (0..9): [A067059(n,k) for k in (0..9)] # Peter Luschny, May 05 2014

A001980 Number of partitions of floor(7n/2)-1 into n nonnegative integers each no greater than 7.

Original entry on oeis.org

0, 1, 4, 10, 23, 48, 94, 166, 285, 464, 734, 1109, 1646, 2371, 3366, 4652, 6357, 8519, 11309, 14754, 19103, 24399, 30956, 38797, 48355, 59665, 73264, 89145, 108011, 129864, 155554, 185017, 219336, 258438, 303604, 354665, 413213, 479048, 554033
Offset: 0

Views

Author

Keywords

Comments

In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2)-1 involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001979.

Programs

  • PARI
    f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

Formula

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2)-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^24 +3*x^23 +5*x^22 +10*x^21 +17*x^20 +26*x^19 +33*x^18 +45*x^17 +55*x^16 +61*x^15 +63*x^14 +68*x^13 +67*x^12 +68*x^11 +63*x^10 +61*x^9 +55*x^8 +45*x^7 +33*x^6 +26*x^5 +17*x^4 +10*x^3 +5*x^2 +3*x +1)*x / ((x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^2+x+1)^2 *(x^2-x +1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - Alois P. Heinz, Jul 25 2015

Extensions

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015
Showing 1-2 of 2 results.