A001997 Number of different shapes formed by bending a piece of wire of length n in the plane.
1, 1, 2, 4, 10, 24, 66, 176, 493, 1362, 3821, 10660, 29864, 83329, 232702, 648182, 1804901, 5015725, 13931755, 38635673, 107090666, 296449133, 820271143, 2267225157, 6264244414, 17291930470
Offset: 0
Examples
._. ._._._. Here are the |_. . ._. . 4 solutions ._._| . |_. when n=3 (described by 00, RR, 0L, RL). The 24 solutions for n=5 are 0000, 000R, 00R0, 00RR, 00RL, L00L, L00R, 0R0R, 0R0L, 0RR0, 0RL0, 0LRL, 0LRR, 0LLR, 0LLL, R0LR, R0LL, R0RL, R0RR, LRLR, LRLL, LRLR, LRRR, LLRR.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. M. Foster, Solution to Problem E185, Amer. Math. Monthly, 44 (1937), 50-51.
- R. M. Foster, Solution to Problem E185, Amer. Math. Monthly, 44 (1937), 50-51. [Annotated scanned copy]
- Jessica Gonzalez, Illustration of a(4)=10
- Eric Weisstein's World of Mathematics, Self-avoiding walk.
- Index entries for sequences obtained by enumerating foldings
Crossrefs
Extensions
More terms from David W. Wilson, Jul 18 2001
Comments