A000682 Semi-meanders: number of ways a semi-infinite directed curve can cross a straight line n times.
1, 1, 2, 4, 10, 24, 66, 174, 504, 1406, 4210, 12198, 37378, 111278, 346846, 1053874, 3328188, 10274466, 32786630, 102511418, 329903058, 1042277722, 3377919260, 10765024432, 35095839848, 112670468128, 369192702554, 1192724674590, 3925446804750
Offset: 1
Examples
a(4) = 4: the four solutions with three crossings are the two solutions shown in A086441(3) together with their reflections about a North-South axis.
References
- A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- I. Jensen, Table of n, a(n) for n = 1..45
- CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [ FS ] (1996) 497-535.
- P. Di Francesco, Matrix model combinatorics: applications to folding and coloring, arXiv:math-ph/9911002, 1999.
- I. Jensen, Home page
- I. Jensen, Terms a(1)..a(45)
- I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
- I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
- M. La Croix, Approaches to the Enumerative Theory of Meanders
- Stéphane Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025 [math.CO], 2013.
- Stéphane Legendre, Illustration of initial terms
- Bowie Liu, Dennis Wong, Chan-Tong Lam, and Marcus Im, Recursive and iterative approaches to generate rotation Gray codes for stamp foldings and semi-meanders, arXiv:2411.05458 [cs.DS], 2024. See p. 2.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- A. Panayotopoulos and P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
- Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
- J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
- J. Touchard, Contributions à l'étude du problème des timbres poste, Canad. J. Math., 2 (1950), 385-398.
- Index entries for sequences obtained by enumerating foldings
Programs
-
Mathematica
A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]]; a[n_] := A000136[[n]]/n; Array[a, 45] (* Jean-François Alcover, Sep 06 2019 *)
Formula
a(n) = 2*A000560(n-1) for n >= 3.
For n >= 2, a(n) = 2^(n-2) + Sum_{x=3..n-2} (2^(n-x-2)*A301620(x)). - Roger Ford, Apr 23 2018
a(n) = 2^(n-2) + Sum_{j=4..n-1} (Sum_{k=3..floor((j+2)/2)} (A259689(j,k)*(k-2)*2^(n-1-j))). - Roger Ford, Dec 12 2018
a(n) = (n-1)! - Sum_{k=3..n-1} (A223094(k) * (n-1)! / k!). - Roger Ford, Aug 23 2024
Extensions
Sade gives the first 11 terms. Computed to n = 45 by Iwan Jensen.
Offset changed by Roger Ford, Feb 09 2018
Comments