cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A051436 Number of undirected walks of length n+1 on tetrahedron, visiting n+2 vertices, with n "corners", as in A001998, but allowing only rigid motions in 3-space (|G| = 12). Walks are not self-avoiding.

Original entry on oeis.org

1, 2, 5, 12, 39, 111, 350, 1044, 3201, 9627, 29150, 87672, 264069, 793431, 2384450, 7159164, 21494001, 64507827, 193589270, 580878432, 1742897949, 5229157551, 15688522250, 47067483684, 141206647401, 423627793227, 1270900160990, 3812732430792, 11438264409429
Offset: 0

Views

Author

Keywords

Examples

			For n=2 there are three walks that stay in one face and two that visit two faces.
		

Crossrefs

Programs

  • Haskell
    a051436 n = (3 ^ n + 3 ^ m - 2 ^ n + (1 - r) * 2 ^ m) `div` 2 + r
                where (m,r) = divMod n 2
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Maple
    a:= n-> `if`(irem(n, 2, 'm')=0,
            (3^n+3^m)/2+2^(m-1), (3^n+3^m)/2+1) -2^(n-1):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    a[n_?OddQ] := (3^n + 3^((n - 1)/2))/2 - 2^(n - 1) + 1; a[n_?EvenQ] := (3^n + 3^(n/2))/2 - 2^(n - 1) + 2^(n/2 - 1); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 25 2013, from formula *)
    LinearRecurrence[{5,0,-30,25,55,-60,-30,36},{1,2,5,12,39,111,350,1044},40] (* Harvey P. Dale, Oct 30 2015 *)
  • PARI
    a(n)=if(n%2, (3^n + 3^((n - 1)/2))/2 + 1, (3^n + 3^(n/2))/2 + 2^(n/2 - 1)) - 2^(n-1) \\ Charles R Greathouse IV, Feb 10 2017

Formula

n=2m: (3^n+3^m)/2 -2^(n-1)+2^(m-1); n=2m+1: (3^n+3^m)/2 - 2^(n-1) +1.
G.f.: -(39*x^7-20*x^6-39*x^5+14*x^4+17*x^3-5*x^2-3*x+1) / ((x-1)*(x+1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)). - Colin Barker, Jul 17 2013

Extensions

Corrected by T. D. Noe, Nov 09 2006

A178778 Partial sums of walks of length n+1 on a tetrahedron A001998.

Original entry on oeis.org

1, 3, 7, 17, 42, 112, 308, 882, 2563, 7565, 22449, 66979, 200204, 599514, 1796350, 5385764, 16150725, 48442327, 145307291, 435892341, 1307617966, 3922765316, 11768118792, 35304090646, 105911740487, 317734424289, 953201678533, 2859602644103, 8578803149328
Offset: 0

Views

Author

Jonathan Vos Post, Dec 26 2010

Keywords

Comments

The subsequence of primes begins 3, 7, 17, no more through a(27).

Examples

			a(5) = 1 + 2 + 4 + 10 + 25 + 70 = 112.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (6*x^3-4*x^2-2*x+1)/((x-1)^2*(3*x-1)*(3*x^2-1)) )); // G. C. Greubel, Jan 24 2019
    
  • Mathematica
    CoefficientList[Series[(6*x^3-4*x^2-2*x+1)/((x-1)^2*(3*x-1)*(3*x^2-1)), {x,0,30}], x] (* G. C. Greubel, Jan 24 2019 *)
  • PARI
    Vec((1-2*x-4*x^2+6*x^3)/((1-x)^2*(1-3*x)*(1-3*x^2)) + O(x^50)) \\ Colin Barker, May 17 2016
    
  • Sage
    ((6*x^3-4*x^2-2*x+1)/((x-1)^2*(3*x-1)*(3*x^2-1))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 24 2019

Formula

a(n) = Sum_{i=0..n} (if i mod 2 = 0 then ((3^((i-2)/2)+1)/2)^2 else 3^((i-3)/2)+(1/4)*(3^(i-2)+1)).
G.f.: (6*x^3-4*x^2-2*x+1) / ((x-1)^2*(3*x-1)*(3*x^2-1)). - Colin Barker, Apr 20 2013
From Colin Barker, May 17 2016: (Start)
a(n) = (-7+3^(1+n)+3^(1/2*(-1+n))*(9-9*(-1)^n+5*sqrt(3)+5*(-1)^n*sqrt(3))+2*(1+n))/8.
a(n) = (2*n + 10*3^(n/2) + 3^(n+1) - 5)/8 for n even.
a(n) = (2*n + 3^(n+1) + 2*3^((n+3)/2) - 5)/8 for n odd.
a(n) = 5*a(n-1) - 4*a(n-2) - 12*a(n-3) + 21*a(n-4) - 9*a(n-5) for n>4.
(End)

A005418 Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
Offset: 1

Views

Author

Keywords

Comments

Equivalently, walks on triangle, visiting n+2 vertices, so length n+1, n "corners"; the symmetry group is S3, reversing a walk does not count as different. Walks are not self-avoiding. - Colin Mallows
Slavik V. Jablan observes that this is also the number of rational knots and links with n+2 crossings (cf. A018240). See reference. [Corrected by Andrey Zabolotskiy, Jun 18 2020]
Number of bit strings of length (n-1), not counting strings which are the end-for-end reversal or the 0-for-1 reversal of each other as different. - Carl Witty (cwitty(AT)newtonlabs.com), Oct 27 2001
The formula given in page 1095 of the Balasubramanian reference can be used to derive this sequence. - Parthasarathy Nambi, May 14 2007
Also number of compositions of n up to direction, where a composition is considered equivalent to its reversal, see example. - Franklin T. Adams-Watters, Oct 24 2009
Number of normally non-isomorphic realizations of the associahedron of type I starting with dimension 2 in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of fibonacenes with n+2 hexagons. See the Balaban and the Dobrynin references. - Emeric Deutsch, Apr 21 2013
From the point of view of binary grids, it is a (1,n)-rectangular grid. A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11. - Yosu Yurramendi, May 19 2013
Number of n-vertex difference graphs (bipartite 2K_2-free graphs) [Peled & Sun, Thm. 9]. - Falk Hüffner, Jan 10 2016
The offset should be 0, since the first row of A034851 is row 0. The name would then be: "Number of n bead...". - Daniel Forgues, Jul 26 2018
a(n) is the number of non-isomorphic generalized rigid ladders with n cells. A generalized rigid ladder with n cells is a graph with vertex set is the union of {u_0, u_1, ..., u_n} and {v_0, v_1, ..., v_n}, and for every 0 <= i <= n-1, the edges are of the form {u_i,u_i+1}, {v_i, v_i+1}, {u_i,v_i} and either {u_i,v_i+1} or {u_i+1,v_i}. - Christian Barrientos, Jul 29 2018
Also number of non-isomorphic stairs with n+1 cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. - Christian Barrientos and Sarah Minion, Jul 29 2018
From Robert A. Russell, Oct 28 2018: (Start)
There are two different unoriented row colorings using two colors that give us very similar results here, a difference of one in the offset. In an unoriented row, chiral pairs are counted as one.
a(n) is the number of color patterns (set partitions) of an unoriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if the colors are permutable.
a(n+1) is the number of ways to color an unoriented row of length n using two noninterchangeable colors (one need not use both colors).
See the examples below of these two different colorings. (End)
Also arises from the enumeration of types of based polyhedra with exactly two triangular faces [Rademacher]. - N. J. A. Sloane, Apr 24 2020
a(n) is the number of (unlabeled) 2-paths with n+4 vertices. (A 2-path with order n at least 4 can be constructed from a 3-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to an existing 2-clique containing an existing 2-leaf.) - Allan Bickle, Apr 05 2022
a(n) is the number of caterpillars with a perfect matching and order 2n+2. - Christian Barrientos, Sep 12 2023
a(n) is also the number of distinct planar embeddings of the (n+2)-centipede graph (up to at least n=8 and likely for all larger n). - Eric W. Weisstein, May 21 2024
a(n) is also the number of distinct planar embeddings of the 2 X (n+2) grid graph i.e., the (n+2)-ladder graph. - Eric W. Weisstein, May 21 2024
Dimension of the homogeneous component of degree n of the free Jordan algebra on two generators (or, in this case, the free special Jordan algebra on two generators). It follows from (Shirshov 1956, Cohn 1959). - Vladimir Dotsenko, Mar 29 2025

Examples

			a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018
From _Robert A. Russell_, Oct 28 2018: (Start)
For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.
For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
		

References

  • K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
  • Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
  • Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320750 (set partitions).
Cf. A131577 (oriented), A122746(n-3) (chiral), A016116 (achiral), for set partitions with up to two subsets.
Column 2 of A277504, offset by one (colors not permutable).
Cf. A000079 (oriented), A122746(n-2) (chiral), and A060546 (achiral), for a(n+1).

Programs

  • Haskell
    a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
    
  • Maple
    A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
  • Mathematica
    LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
    
  • Python
    def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = 2^(n-2) + 2^(floor(n/2) - 1).
G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - Simon Plouffe in his 1992 dissertation
G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - Wolfdieter Lang, May 08 2001
a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - Henry Bottomley, Jul 14 2001
a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Oct 24 2008
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Jaume Oliver Lafont, Dec 05 2008
Union of A007582 and A161168. Union of A007582 and A063376. - Jaroslav Krizek, Aug 14 2009
G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2011
a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - Johannes W. Meijer, Aug 26 2013
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.
a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)
E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - Stefano Spezia, Jun 01 2022

A000228 Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells.

Original entry on oeis.org

1, 1, 3, 7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101, 3274826, 15796897, 76581875, 372868101, 1822236628, 8934910362, 43939164263, 216651036012, 1070793308942, 5303855973849, 26323064063884, 130878392115834, 651812979669234, 3251215493161062, 16240020734253127, 81227147768301723, 406770970805865187, 2039375198751047333
Offset: 1

Views

Author

Keywords

Comments

From Markus Voege, Nov 24 2009: (Start)
On the difference between this sequence and A038147:
The first term that differs is for n=6; for all subsequent terms, the number of polyhexes is larger than the number of planar polyhexes.
If I recall correctly, polyhexes are clusters of regular hexagons that are joined at the edges and are LOCALLY embeddable in the hexagonal lattice.
"Planar polyhexes" are polyhexes that are GLOBALLY embeddable in the honeycomb lattice.
Example: (Planar) polyhex with 6 cells (x) and a hole (O):
.. x x
. x O x
.. x x
Polyhex with 6 cells that is cut open (I):
.. xIx
. x O x
.. x x
This polyhex is not globally embeddable in the honeycomb lattice, since adjacent cells of the lattice must be joined. But it can be embedded locally everywhere. It is a start of a spiral. For n>6 the spiral can be continued so that the cells overlap.
Illegal configuration with cut (I):
.. xIx
. x x x
.. x x
This configuration is NOT a polyhex since the vertex at
.. xIx
... x
is not embeddable in the honeycomb lattice.
One has to keep in mind that these definitions are inspired by chemistry. Hence, potential molecules are often the motivation for these definitions. Think of benzene rings that are fused at a C-C bond.
The (planar) polyhexes are "free" configurations, in contrast to "fixed" configurations as in A001207 = Number of fixed hexagonal polyominoes with n cells.
A000228 (planar polyhexes) and A001207 (fixed hexagonal polyominoes) differ only by the attribute "free" vs. "fixed," that is, whether the different orientations and reflections of an embedding in the lattice are counted.
The configuration
. x x .... x
.. x .... x x
is counted once as free and twice as fixed configurations.
Since most configurations have no symmetry, (A001207 / A000228) -> 12 for n -> infinity. (End)

References

  • A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
  • A. T. Balaban and Paul von R. Schleyer, "Graph theoretical enumeration of polymantanes", Tetrahedron, (1978), vol. 34, 3599-3609
  • M. Gardner, Polyhexes and Polyaboloes. Ch. 11 in Mathematical Magic Show. New York: Vintage, pp. 146-159, 1978.
  • M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
  • J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(13) from Achim Flammenkamp, Feb 15 1999
a(14) from Brendan Owen, Dec 31 2001
a(15) from Joseph Myers, May 05 2002
a(16)-a(20) from Joseph Myers, Sep 21 2002
a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
a(22)-a(30) from John Mason, Jul 18 2023

A284949 Triangle read by rows: T(n,k) = number of reversible string structures of length n using exactly k different symbols.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 9, 15, 6, 1, 1, 19, 50, 37, 9, 1, 1, 35, 160, 183, 76, 12, 1, 1, 71, 502, 877, 542, 142, 16, 1, 1, 135, 1545, 3930, 3523, 1346, 242, 20, 1, 1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 06 2017

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of k-block partitions of an n-set up to reflection.
T(n,k) = pi_k(P_n) which is the number of non-equivalent partitions of the path on n vertices, with exactly k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019

Examples

			Triangle begins:
1;
1,   1;
1,   2,    1;
1,   5,    4,     1;
1,   9,   15,     6,     1;
1,  19,   50,    37,     9,     1;
1,  35,  160,   183,    76,    12,    1;
1,  71,  502,   877,   542,   142,   16,   1;
1, 135, 1545,  3930,  3523,  1346,  242,  20,  1;
1, 271, 4730, 17185, 21393, 11511, 2980, 390, 25, 1;
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2..6 are A056326, A056327, A056328, A056329, A056330.
Row sums are A103293.
Partial row sums include A005418, A001998(n-1), A056323, A056324, A056325.
Cf. A277504, A008277 (set partitions), A152175 (up to rotation), A152176 (up to rotation and reflection), A304972 (achiral patterns).

Programs

  • Mathematica
    (* achiral color patterns for row of n colors containing k different colors *)
    Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
       (* else *) _, If[OddQ[n],
       Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
       Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1] + 2^i Ach[n-2-2i, k-2]),
       {i, 0, n/2-1}]]]
    Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 15}, {k, 1, n}] // Flatten
    (* Robert A. Russell, Feb 10 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(ReversiblePerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    \\ Ach is A304972 as square matrix.
    Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
    T(n)={(matrix(n, n, i, k, stirling(i, k, 2)) + Ach(n))/2}
    { my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019

A056324 Number of reversible string structures with n beads using a maximum of five different colors.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 116, 455, 1993, 9134, 43580, 211659, 1041441, 5156642, 25640456, 127773475, 637624313, 3184387574, 15910947980, 79521737939, 397510726681, 1987259550002, 9935420646296, 49674470817195, 248364482308833, 1241798790172214
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure. Thus aabc, cbaa and bbac are all considered to be identical.
Number of set partitions of an unoriented row of n elements with five or fewer nonempty subsets. - Robert A. Russell, Oct 28 2018
There are nonrecursive formulas, generating functions, and computer programs for A056272 and A305751, which can be used in conjunction with the formula. - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 02 2022: (Start)
a(n) is the number of (unlabeled) 5-paths with n+7 vertices. (A 5-path with order n at least 7 can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to an existing 5-clique containing an existing 5-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)

Examples

			For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A032122.
Column 5 of A320750.
Cf. A056272 (oriented), A320935 (chiral), A305751 (achiral).
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=5; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}]  (* Robert A. Russell, Oct 28 2018 *)
    LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {1, 1, 2, 4, 11, 32, 116, 455, 1993}, 40] (* Robert A. Russell, Oct 28 2018 *)

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
G.f.: (1-10x+25x^2+32x^3-196x^4+149x^5+225x^6-321x^7+85x^8)/((1-x)*(1-2x)*(1-3x)*(1-5x)*(1-2x^2)*(1-5x^2)). - Colin Barker, Nov 24 2012 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A056272(n) + A305751(n)) / 2.
a(n) = A056272(n) - A320935(n) = A320935(n) + A305751(n).
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=5 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n) = A000007(n) + A057427(n) + A056326(n) + A056327(n) + A056328(n) + A056329(n). (End)
For n>8, a(n) = 11*a(n-1) - 34*a(n-2) - 16*a(n-3) + 247*a(n-4) - 317*a(n-5) - 200*a(n-6) + 610*a(n-7) - 300*a(n-8). - Muniru A Asiru, Oct 30 2018
From Allan Bickle, Jun 04 2022: (Start)
a(n) = 5^n/240 + 3^n/24 + 2^n/12 + 13*5^(n/2)/120 + 2^(n/2)/6 + 5/16 for n>0 even;
a(n) = 5^n/240 + 3^n/24 + 2^n/12 + 5^((n+1)/2)/24 + 2^((n+1)/2)/12 + 5/16 for n>0 odd. (End)

Extensions

Terms added by Robert A. Russell, Oct 30 2018
a(0)=1 prepended by Robert A. Russell, Nov 07 2018

A103293 Number of ways to color n regions arranged in a line such that consecutive regions do not have the same color.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 32, 117, 468, 2152, 10743, 58487, 340390, 2110219, 13830235, 95475556, 691543094, 5240285139, 41432986588, 341040317063, 2916376237350, 25862097486758, 237434959191057, 2253358057283035, 22076003468637450, 222979436690612445
Offset: 0

Views

Author

Hugo van der Sanden, Mar 10 2005

Keywords

Comments

From David W. Wilson, Mar 10 2005: (Start)
Let M(n) be a map of n regions in a row. The number of ways to color M(n) if same-color regions are allowed to touch is given by A000110(n).
For example, M(4) has A000110(4) = 15 such colorings: aaaa aaab aaba aabb aabc abaa abab abac abba abbb abbc abca abcb abcc abcd.
The number of colorings of M(n) that are equivalent to their reverse is given by A080107(n). For example, M(4) has A080107(4) = 7 colorings that are equivalent to their reversal: aaaa aabb abab abba abbc abca abcd.
The number of distinct colorings when reversals are counted as equivalent is given by (A000110(n) + A080107(n))/2, which is essentially the present sequence. M(4) has 11 colorings that are distinct up to reversal: aaaa aaab aaba aabb aabc abab abac abba abbc abca abcd.
We can redo the whole analysis, this time forbidding same-color regions to touch. When we do, we get the same sequences, each with an extra 1 at the beginning. (End)
Note that A056325 gives the number of reversible string structures with n beads using a maximum of six different colors ... and, of course, any limit on the number of colors will be the same as this sequence above up to that number.
If the two ends of the line are distinguishable, so that 'abcb' and 'abac' are distinct, we get the Bell numbers, A000110(n - 1).
With a different offset, number of set partitions of [n] up to reflection (i<->n+1-i). E.g., there are 4 partitions of [3]: 123, 1-23, 13-2, 1-2-3 but not 12-3 because it is the reflection of 1-23. - David Callan, Oct 10 2005

Examples

			For n=4, possible arrangements are 'abab', 'abac', 'abca', 'abcd'; we do not include 'abcb' since it is equivalent to 'abac' (if you reverse and renormalize).
		

Crossrefs

The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively (these are also columns of the array in A320750). The sequences counting the unlabeled k-paths converge to this sequence when k goes to infinity.
Row sums of A284949.

Programs

  • Maple
    with(combinat): b:= n-> coeff(series(exp((exp(2*x)-3)/2+exp(x)), x, n+1), x,n)*n!: a:= n-> `if`(n=0, 1, (bell(n-1) +`if`(modp(n,2)=1, b((n-1)/2), add(binomial(n/2-1,k) *b(k), k=0..n/2-1)))/2): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    b[n_] := SeriesCoefficient[Exp[(Exp[2*x] - 3)/2 + Exp[x]], {x, 0, n}]*n!; a[n_] := If[n == 0, 1, (BellB[n - 1] + If[Mod[n, 2] == 1, b[(n - 1)/2], Sum[Binomial[n/2 - 1, k] *b[k], {k, 0, n/2 - 1}]])/2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 17 2016, after Alois P. Heinz *)
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0],
       k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* achiral *)
    Table[Sum[(StirlingS2[n-1, k] + Ach[n-1, k])/2, {k, 0, n-1}], {n, 1, 30}]
    (* with a(0) omitted - Robert A. Russell, May 19 2018 *)
  • Python
    from functools import lru_cache
    from sympy.functions.combinatorial.numbers import stirling
    def A103293(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def ach(n,k): return (n==k) if n<2 else k*ach(n-2,k)+ach(n-2,k-1)+ach(n-2,k-2)
        return sum(stirling(n-1,k,kind=2)+ach(n-1,k)>>1 for k in range(n)) # Chai Wah Wu, Oct 15 2024

Formula

a(n) = Sum_{k=0..n-1} (Stirling2(n-1,k) + Ach(n-1,k))/2 for n>0, where Ach(n,k) = [n>1] * (k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)) + [n<2 & n>=0 & n==k]. - Robert A. Russell, May 19 2018

Extensions

More terms from David W. Wilson, Mar 10 2005

A002216 Harary-Read numbers: restricted hexagonal polyominoes (cata-polyhexes) with n cells.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 37, 123, 446, 1689, 6693, 27034, 111630, 467262, 1981353, 8487400, 36695369, 159918120, 701957539, 3101072051, 13779935438, 61557789660, 276327463180, 1245935891922, 5640868033058, 25635351908072, 116911035023017
Offset: 0

Views

Author

Keywords

Comments

Named after the American mathematician Frank Harary (1921-2005) and the British mathematician Ronald Cedric Read (1924-2019). - Amiram Eldar, Jun 22 2021

References

  • S. J. Cyvin, J. Brunvoll, X. F. Guo and F. J. Zhang, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., Vol. 38, No. 1 (1993), pp. 65-77.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem., Vol. 134, No. 1 (1997), pp. 55-70.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Wenchen He and Wenjie He, Generation and enumeration of planar polycyclic aromatic hydrocarbons, Tetrahedron, Vol. 42, No. 19 (1986), pp. 5291-5299. See Table 3.
  • J. V. Knop, K. Szymansky, Željko Jeričević and Nenad Trinajstić, On the total number of polyhexes, Match, Vol. 16 (1984), pp. 119-134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer generation of isomeric structures, Pure & Appl. Chem., Vol. 55, No. 2 (1983), pp. 379-390.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(12+(1-5*x)^(3/2)*(1-x)^(3/2)+24*x-48*x^2- 24*x^3- 3*(3+5 x)*Sqrt[1-5*x^2]*Sqrt[1-x^2]-4*Sqrt[1-5*x^3]*Sqrt[1-x^3])/ (24*x^2),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2013 *)

Formula

G.f.: (1/(24*x^2))*(12+24*x-48*x^2-24*x^3 +(1-x)^(3/2)*(1-5*x)^(3/2)-3*(3+5*x)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2) -4*(1-x^3)^(1/2)*(1-5*x^3)^(1/2)).
a(n) = (1/2)[A002214(n)+A002215(n)], n>=1. - Emeric Deutsch, Dec 23 2003
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Aug 09 2013

A056323 Number of reversible string structures with n beads using a maximum of four different colors.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 107, 379, 1451, 5611, 22187, 87979, 350891, 1400491, 5597867, 22379179, 89500331, 357952171, 1431743147, 5726775979, 22906841771, 91626580651, 366505274027, 1466017950379, 5864067607211
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure. Thus aabc, cbaa and bbac are all considered to be identical.
Number of set partitions of an unoriented row of n elements with four or fewer nonempty subsets. - Robert A. Russell, Oct 28 2018
There are nonrecursive formulas, generating functions, and computer programs for A124303 and A305750, which can be used in conjunction with the formula. - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 02 2022: (Start)
a(n) is the number of (unlabeled) 4-paths with n+6 vertices. (A 4-path with order n at least 6 can be constructed from a 5-clique by iteratively adding a new 4-leaf (vertex of degree 4) adjacent to an existing 4-clique containing an existing 4-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)

Examples

			For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD. The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A032121.
Column 4 of A320750.
Cf. A124303 (oriented), A320934 (chiral), A305750 (achiral).
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=4; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *)
    LinearRecurrence[{5, 0, -20, 16}, {1, 1, 2, 4, 11}, 40] (* Robert A. Russell, Oct 28 2018 *)

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
For n > 0, a(n) = (16 + (-2)^n + 15*2^n + 4^n)/48. - Colin Barker, Nov 24 2012
G.f.: (1 - 4x - 3x^2 + 14x^3 - 5x^4) / ((1-x)*(1-4x)*(1-4x^2)). - Colin Barker, Nov 24 2012 [Adapted to offset 0 by Robert A. Russell, Nov 09 2018]
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A124303(n) + A305750(n)) / 2.
a(n) = A124303(n) - A320934(n) = A320934(n) + A305750(n).
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=4 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n) = A000007(n) + A057427(n) + A056326(n) + A056327(n) + A056328(n). (End)

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 09 2018

A056325 Number of reversible string structures with n beads using a maximum of six different colors.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633, 1704115, 9819216, 57365191, 338134521, 2005134639, 11937364184, 71254895955, 426063226937, 2550552314219, 15280103807200, 91588104196415, 549159428968825
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure. Thus aabc, cbaa and bbac are all considered to be identical.
Number of set partitions of an unoriented row of n elements with six or fewer nonempty subsets. - Robert A. Russell, Oct 28 2018
There are nonrecursive formulas, generating functions, and computer programs for A056273 and A305752, which can be used in conjunction with the first formula. - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 23 2022: (Start)
a(n) is the number of (unlabeled) 6-paths with n+8 vertices. (A 6-path with order n at least 8 can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to an existing 6-clique containing an existing 6-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)

Examples

			For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056308.
Column 6 of A320750.
Cf. A056273 (oriented), A320936 (chiral), A305752 (achiral).
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=6; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *)
    LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633}, 40] (* Robert A. Russell, Oct 28 2018 *)
  • PARI
    Vec((1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Apr 15 2020

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A056273(n) + A305752(n)) / 2.
a(n) = A056273(n) - A320936(n) = A320936(n) + A305752(n).
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=6 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n) = A000007(n) + A057427(n) + A056326(n) + A056327(n) + A056328(n) + A056329(n) + A056330(n).
(End)
From Colin Barker, Mar 24 2020: (Start)
G.f.: (1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)).
a(n) = 16*a(n-1) - 84*a(n-2) + 84*a(n-3) + 685*a(n-4) - 2140*a(n-5) + 180*a(n-6) + 7200*a(n-7) - 8244*a(n-8) - 4176*a(n-9) + 11664*a(n-10) - 5184*a(n-11) for n>11.
(End)
From Allan Bickle, Jun 23 2022: (Start)
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (19/360)*6^(n/2) + (1/9)*3^(n/2) + (1/8)*2^(n/2) + 17/60 for n > 0 even;
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (13/720)*6^((n+1)/2) + (1/18)*3^((n+1)/2) + (1/16)*2^((n+1)/2) + 17/60 for n > 0 odd. (End)

Extensions

Another term from Robert A. Russell, Oct 29 2018
a(0)=1 prepended by Robert A. Russell, Nov 09 2018
Showing 1-10 of 25 results. Next