A277504
Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0
Array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 ...
0 1 3 6 10 15 21 28 36 45 ...
0 1 6 18 40 75 126 196 288 405 ...
0 1 10 45 136 325 666 1225 2080 3321 ...
0 1 20 135 544 1625 3996 8575 16640 29889 ...
0 1 36 378 2080 7875 23436 58996 131328 266085 ...
0 1 72 1134 8320 39375 140616 412972 1050624 2394765 ...
0 1 136 3321 32896 195625 840456 2883601 8390656 21526641 ...
0 1 272 9963 131584 978125 5042736 20185207 67125248 193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
Rows 0-20 are
A000012,
A001477,
A000217 (triangular numbers),
A002411 (pentagonal pyramidal numbers),
A037270,
A168178,
A071232,
A168194,
A071231,
A168372,
A071236,
A168627,
A071235,
A168663,
A168664,
A170779,
A170780,
A170790,
A170791,
A170801,
A170802.
-
[[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
-
Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
-
T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
Array transposed for greater consistency by
Andrew Howroyd, Apr 04 2017
A001998
Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.
Original entry on oeis.org
1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, 14884, 44530, 133225, 399310, 1196836, 3589414, 10764961, 32291602, 96864964, 290585050, 871725625, 2615147350, 7845353476, 23535971854, 70607649841, 211822683802, 635467254244, 1906400965570, 5719200505225, 17157599124190
Offset: 0
There are 2 ways to bend a piece of wire of length 2 (bend it or not).
For n=4 and a(n-1)=10, the 6 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, and ABBC. The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - _Robert A. Russell_, Oct 28 2018
- A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 75.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [I think this reference does not mention this sequence. - N. J. A. Sloane, Aug 10 2006]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Indranil Ghosh, Table of n, a(n) for n = 0..2092 (terms 0..500 from T. D. Noe)
- A. T. Balaban, J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures, Tetrahedron 44(1) (1988), 221-228. See Eq. (6), p. 223.
- A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
- Christian Barrientos and Sarah Minion, On the Graceful Cartesian Product of Alpha-Trees, Theory and Applications of Graphs, Vol. 4: Iss. 1, Article 3, 2017. (It mentions this sequence on p. 7.)
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147 [annotated scanned copy].
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular structure 376 (Issues 1-3) (1996), 495-505. See Table 2 on p. 501.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- R. M. Foster, Solution to Problem E185, Amer. Math. Monthly, 44 (1937), 50-51.
- R. M. Foster, Solution to Problem E185, Amer. Math. Monthly, 44 (1937), 50-51 [annotated scanned copy].
- F. Harary and R. W. Robinson, Tapeworms, Unpublished manuscript, circa 1973. (Annotated scanned copy)
- Thomas M. Liggett and Wenpin Tang, One-dependent hard-core processes and colorings of the star graph, arXiv:1804.06877 [math.PR], 2018.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Gyula Tasi and Fujio Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 60).
- Eric Weisstein's World of Mathematics, Alkane Graph.
- Eric Weisstein's World of Mathematics, Planar Embedding.
- Index entries for sequences obtained by enumerating foldings
- Index entries for linear recurrences with constant coefficients, signature (4,0,-12,9).
Column 3 of
A320750, offset by one. Column k = 0 of
A323942, offset by two.
The sequences above converge to
A103293(n+1).
-
a:=[];; for n in [2..45] do if n mod 2 =0 then Add(a,((3^((n-2)/2)+1)/2)^2); else Add(a, 3^((n-3)/2)+(1/4)*(3^(n-2)+1)); fi; od; a; # Muniru A Asiru, Oct 28 2018
-
A001998 := proc(n) if n = 0 then 1 elif n mod 2 = 1 then (1/4)*(3^n+4*3^((n-1)/2)+1) else (1/4)*(3^n+2*3^(n/2)+1); fi; end;
A001998:=(-1+3*z+2*z**2-8*z**3+3*z**4)/(z-1)/(3*z-1)/(3*z**2-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence with an extra leading 1
-
a[n_?OddQ] := (1/4)*(3^n + 4*3^((n - 1)/2) + 1); a[n_?EvenQ] := (1/4)*(3^n + 2*3^(n/2) + 1); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 25 2013, from formula *)
LinearRecurrence[{4,0,-12,9},{1,2,4,10},30] (* Harvey P. Dale, Apr 10 2013 *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=3; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,k}]/2,{n,40}] (* Robert A. Russell, Oct 28 2018 *)
-
Vec((1-2*x-4*x^2+6*x^3)/((1-x)*(1-3*x)*(1-3*x^2)) + O(x^50)) \\ Colin Barker, May 15 2016
A152176
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 14, 11, 3, 1;
1, 8, 31, 33, 16, 3, 1;
1, 17, 82, 137, 85, 27, 4, 1;
1, 22, 202, 478, 434, 171, 37, 4, 1;
1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
...
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Tilman Piesk, Partition related number triangles
- Marko Riedel, Bracelets with swappable colors classified by the distribution of colors, Power Group Enumeration algorithm
- Marko Riedel, Maple code for the number of bracelets with some number of swappable colors by Power Group Enumeration
- Mohammad Hadi Shekarriz, GAP Program
-
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
(* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
{i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
+ Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={(R(n) + Ach(n))/2}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A152175
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 18, 13, 3, 1;
1, 9, 43, 50, 20, 3, 1;
1, 19, 126, 221, 136, 36, 4, 1;
1, 29, 339, 866, 773, 296, 52, 4, 1;
1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1;
1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105 , 5, 1;
1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1;
1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A(1,n,k) in formula is the Stirling subset number
A008277.
-
(* Using recursion formula from Gilbert and Riordan:*)
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
{n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A103293
Number of ways to color n regions arranged in a line such that consecutive regions do not have the same color.
Original entry on oeis.org
1, 1, 1, 2, 4, 11, 32, 117, 468, 2152, 10743, 58487, 340390, 2110219, 13830235, 95475556, 691543094, 5240285139, 41432986588, 341040317063, 2916376237350, 25862097486758, 237434959191057, 2253358057283035, 22076003468637450, 222979436690612445
Offset: 0
For n=4, possible arrangements are 'abab', 'abac', 'abca', 'abcd'; we do not include 'abcb' since it is equivalent to 'abac' (if you reverse and renormalize).
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Matthew Bolan, Jose Brox, Mario Carneiro, Martin Dvořák, Andrés Goens, Harald Husum, Zoltan Kocsis, Alex Meiburg, Pietro Monticone, David Renshaw, Jérémy Scanvic, Shreyas Srinivas, Terence Tao, Anand Rao Tadipatri, Vlad Tsyrklevich, Daniel Weber, and Fan Zheng, The equational theories project: using Lean and Github to complete an implication graph in universal algebra, Equational Theories Project 2024. See p. 41.
The numbers of unlabeled k-paths for k = 2..7 are given in
A005418,
A001998,
A056323,
A056324,
A056325, and
A345207, respectively (these are also columns of the array in
A320750). The sequences counting the unlabeled k-paths converge to this sequence when k goes to infinity.
-
with(combinat): b:= n-> coeff(series(exp((exp(2*x)-3)/2+exp(x)), x, n+1), x,n)*n!: a:= n-> `if`(n=0, 1, (bell(n-1) +`if`(modp(n,2)=1, b((n-1)/2), add(binomial(n/2-1,k) *b(k), k=0..n/2-1)))/2): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
-
b[n_] := SeriesCoefficient[Exp[(Exp[2*x] - 3)/2 + Exp[x]], {x, 0, n}]*n!; a[n_] := If[n == 0, 1, (BellB[n - 1] + If[Mod[n, 2] == 1, b[(n - 1)/2], Sum[Binomial[n/2 - 1, k] *b[k], {k, 0, n/2 - 1}]])/2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 17 2016, after Alois P. Heinz *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0],
k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* achiral *)
Table[Sum[(StirlingS2[n-1, k] + Ach[n-1, k])/2, {k, 0, n-1}], {n, 1, 30}]
(* with a(0) omitted - Robert A. Russell, May 19 2018 *)
-
from functools import lru_cache
from sympy.functions.combinatorial.numbers import stirling
def A103293(n):
if n == 0: return 1
@lru_cache(maxsize=None)
def ach(n,k): return (n==k) if n<2 else k*ach(n-2,k)+ach(n-2,k-1)+ach(n-2,k-2)
return sum(stirling(n-1,k,kind=2)+ach(n-1,k)>>1 for k in range(n)) # Chai Wah Wu, Oct 15 2024
A276544
Triangle read by rows: T(n,k) = number of primitive (aperiodic) reversible string structures with n beads using exactly k different colors.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 9, 15, 6, 1, 0, 16, 49, 37, 9, 1, 0, 35, 160, 183, 76, 12, 1, 0, 66, 498, 876, 542, 142, 16, 1, 0, 133, 1544, 3930, 3523, 1346, 242, 20, 1, 0, 261, 4715, 17179, 21392, 11511, 2980, 390, 25, 1
Offset: 1
Triangle starts
1
0 1
0 2 1
0 4 4 1
0 9 15 6 1
0 16 49 37 9 1
0 35 160 183 76 12 1
0 66 498 876 542 142 16 1
0 133 1544 3930 3523 1346 242 20 1
0 261 4715 17179 21392 11511 2980 390 25 1
...
Primitive reversible word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba; abc => 2 + 1
n=4: aaab, aaba, aabb, abba => 4 (k=2)
aabc, abac, abbc, abca => 4 (k=3)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[n == 0, 1, 0], 1, If[n > 0, 1, 0], _, If[OddQ[n], Sum[Binomial[(n - 1)/2, i] Ach[n - 1 - 2 i, k - 1], {i, 0, (n - 1)/2}], Sum[Binomial[n/2 - 1, i] (Ach[n - 2 - 2 i, k - 1] + 2^i Ach[n - 2 - 2 i, k - 2]), {i, 0, n/2 - 1}]]]
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] (StirlingS2[#, k] + Ach[#, k])/2& ];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2018, after Robert A. Russell and Andrew Howroyd *)
-
\\ here Ach is A304972 as matrix.
Ach(n,m=n)={my(M=matrix(n, m, i, k, i>=k)); for(i=3, n, for(k=2, m, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
T(n,m=n)={my(M=matrix(n, m, i, k, stirling(i, k, 2)) + Ach(n,m)); matrix(n, m, i, k, sumdiv(i, d, moebius(i/d)*M[d,k]))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
A056326
Number of reversible string structures with n beads using exactly two different colors.
Original entry on oeis.org
0, 1, 2, 5, 9, 19, 35, 71, 135, 271, 527, 1055, 2079, 4159, 8255, 16511, 32895, 65791, 131327, 262655, 524799, 1049599, 2098175, 4196351, 8390655, 16781311, 33558527, 67117055, 134225919, 268451839, 536887295, 1073774591, 2147516415, 4295032831, 8590000127
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
Table[(StirlingS2[n,2] + StirlingS2[Floor[n/2]+1,2])/2, {n,1,30}] (* Robert A. Russell, Jan 29 2018 *)
LinearRecurrence[{3, 0, -6, 4}, {0, 1, 2, 5}, 35] (* or *)
Rest@ CoefficientList[Series[x^2*(x^2 + x - 1)/((x - 1) (2 x - 1) (2 x^2 - 1)), {x, 0, 35}], x] (* Michael De Vlieger, Jan 31 2018 *)
A320750
Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented row of length n using k or fewer colors (subsets).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 6, 1, 1, 2, 4, 10, 10, 1, 1, 2, 4, 11, 25, 20, 1, 1, 2, 4, 11, 31, 70, 36, 1, 1, 2, 4, 11, 32, 107, 196, 72, 1, 1, 2, 4, 11, 32, 116, 379, 574, 136, 1, 1, 2, 4, 11, 32, 117, 455, 1451, 1681, 272, 1
Offset: 1
Array begins with T(1,1):
1 1 1 1 1 1 1 1 1 1 1 ...
1 2 2 2 2 2 2 2 2 2 2 ...
1 3 4 4 4 4 4 4 4 4 4 ...
1 6 10 11 11 11 11 11 11 11 11 ...
1 10 25 31 32 32 32 32 32 32 32 ...
1 20 70 107 116 117 117 117 117 117 117 ...
1 36 196 379 455 467 468 468 468 468 468 ...
1 72 574 1451 1993 2135 2151 2152 2152 2152 2152 ...
1 136 1681 5611 9134 10480 10722 10742 10743 10743 10743 ...
1 272 5002 22187 43580 55091 58071 58461 58486 58487 58487 ...
1 528 14884 87979 211659 301633 333774 339764 340359 340389 340390 ...
For T(4,3)=10, the patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, AAAB, AABA, AABC, ABAC, the last four being chiral with partners ABBB, ABAA, ABCC, and ABCB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
As k increases, columns converge to
A103293(n+1).
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[Sum[StirlingS2[n,j] + Ach[n,j], {j,k-n+1}]/2, {k,15}, {n,k}] // Flatten
A056327
Number of reversible string structures with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 1, 4, 15, 50, 160, 502, 1545, 4730, 14356, 43474, 131145, 395150, 1188580, 3572902, 10732065, 32225810, 96733636, 290322394, 871200825, 2614097750, 7843255300, 23531775502, 70599259185, 211805902490
Offset: 1
For a(4)=4, the color patterns are ABCA, ABBC, AABC, and ABAC. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
I:=[0,0,1,4,15,50,160]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
-
k=3; Table[(StirlingS2[n,k] + If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k=3; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 1, 4, 15, 50, 160}, 30] (* Robert A. Russell, Oct 15 2018 *)
-
m=40; v=concat([0,0,1,4,15,50,160], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
A320525
Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1
Triangle begins with T(1,1):
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 6, 10, 4, 0;
0, 12, 40, 28, 6, 0;
0, 28, 141, 167, 64, 9, 0;
0, 56, 464, 824, 508, 124, 12, 0;
0, 120, 1480, 3840, 3428, 1300, 220, 16, 0;
0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0;
0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0;
0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
...
For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
-
\\ here Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
Showing 1-10 of 18 results.
Comments