A320751 Array read by antidiagonals: T(n,k) is the number of chiral pairs of color patterns (set partitions) in a row of length n using k or fewer colors (subsets).
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 4, 6, 0, 0, 0, 1, 4, 16, 12, 0, 0, 0, 1, 4, 20, 52, 28, 0, 0, 0, 1, 4, 20, 80, 169, 56, 0, 0, 0, 1, 4, 20, 86, 336, 520, 120, 0, 0, 0, 1, 4, 20, 86, 400, 1344, 1600, 240, 0, 0, 0, 1, 4, 20, 86, 409, 1852, 5440, 4840, 496, 0
Offset: 1
Examples
Array begins with T(1,1): 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 ... 0 1 1 1 1 1 1 1 1 1 ... 0 2 4 4 4 4 4 4 4 4 ... 0 6 16 20 20 20 20 20 20 20 ... 0 12 52 80 86 86 86 86 86 86 ... 0 28 169 336 400 409 409 409 409 409 ... 0 56 520 1344 1852 1976 1988 1988 1988 1988 ... 0 120 1600 5440 8868 10168 10388 10404 10404 10404 ... 0 240 4840 21760 42892 54208 57108 57468 57488 57488 ... 0 496 14641 87296 210346 299859 331705 337595 338155 338180 ... 0 992 44044 349184 1038034 1699012 2012202 2091458 2102518 2103348 ... For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(4,3)=4, the above, AABC-ABCC, and ABAC-ABCB.
Links
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Crossrefs
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) Table[Sum[StirlingS2[n,j] - Ach[n,j], {j,k-n+1}]/2, {k,15}, {n,k}] // Flatten
Formula
T(n,k) = Sum_{j=1..k} (S2(n,j) - Ach(n,j)) / 2, where S2 is the Stirling subset number A008277 and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
T(n,k) = (A278984(k,n) - A305749(n,k)) / 2 = A278984(k,n) - A320750(n,k) = A320750(n,k) - A305749(n,k).
T(n,k) = Sum_{j=1..k} A320525(n,j).
Comments