A056327
Number of reversible string structures with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 1, 4, 15, 50, 160, 502, 1545, 4730, 14356, 43474, 131145, 395150, 1188580, 3572902, 10732065, 32225810, 96733636, 290322394, 871200825, 2614097750, 7843255300, 23531775502, 70599259185, 211805902490
Offset: 1
For a(4)=4, the color patterns are ABCA, ABBC, AABC, and ABAC. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
I:=[0,0,1,4,15,50,160]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
-
k=3; Table[(StirlingS2[n,k] + If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k=3; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 1, 4, 15, 50, 160}, 30] (* Robert A. Russell, Oct 15 2018 *)
-
m=40; v=concat([0,0,1,4,15,50,160], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
A320525
Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1
Triangle begins with T(1,1):
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 6, 10, 4, 0;
0, 12, 40, 28, 6, 0;
0, 28, 141, 167, 64, 9, 0;
0, 56, 464, 824, 508, 124, 12, 0;
0, 120, 1480, 3840, 3428, 1300, 220, 16, 0;
0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0;
0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0;
0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
...
For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
-
\\ here Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
A107767
a(n) = (1 + 3^n - 2*3^(n/2))/4 if n is even, (1 + 3^n - 4*3^((n-1)/2))/4 if n odd.
Original entry on oeis.org
0, 1, 4, 16, 52, 169, 520, 1600, 4840, 14641, 44044, 132496, 397852, 1194649, 3585040, 10758400, 32278480, 96845281, 290545684, 871666576, 2615029252, 7845176329, 23535617560, 70607118400, 211821620920, 635465659921
Offset: 1
- Balaban, A. T., Brunvoll, J., Cyvin, B. N., & Cyvin, S. J. (1988). Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures. Tetrahedron, 44(1), 221-228. See Eq. 5.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 60).
- Index entries for linear recurrences with constant coefficients, signature (4,0,-12,9).
-
a:=[];; for n in [1..30] do if n mod 2 <> 0 then Add(a,(1+3^n-4*3^((n-1)/2))/4); else Add(a,(1+3^n-2*3^(n/2))/4); fi; od; a; # Muniru A Asiru, Oct 30 2018
-
I:=[0, 1, 4, 16]; [n le 4 select I[n] else 4*Self(n-1)-12*Self(n-3)+9*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
-
a:=proc(n) if n mod 2 = 0 then (1+3^n-2*3^(n/2))/4 else (1+3^n-4*3^((n-1)/2))/4 fi end: seq(a(n),n=1..32);
-
CoefficientList[Series[-x/((x-1)*(3*x-1)*(3*x^2-1)),{x,0,40}],x] (* or *) LinearRecurrence[{4,0,-12,9},{0,1,4,16},50] (* Vincenzo Librandi, Jun 26 2012 *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=3; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,2,40}] (* Robert A. Russell, Oct 28 2018 *)
CoefficientList[Series[(1/12 E^(-Sqrt[3] x) (-3 + 2 Sqrt[3] - (3 + 2 Sqrt[3]) E^(2 Sqrt[3] x) + 3 E^((3 + Sqrt[3]) x) + 3 E^(x + Sqrt[3] x)))/x, {x, 0, 20}], x]*Table[(k+1)!, {k, 0, 20}] (* Stefano Spezia, Oct 29 2018 *)
-
x='x+O('x^50); concat(0, Vec(x^2/((1-x)*(3*x-1)*(3*x^2-1)))) \\ Altug Alkan, Sep 23 2018
A320936
Number of chiral pairs of color patterns (set partitions) for a row of length n using 6 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859, 1699012, 9808848, 57335124, 338073107, 2004955824, 11936998016, 71253827696, 426061036747, 2550545918300, 15280090686256, 91588065861292, 549159350303235, 3293482358956552, 19755007003402944
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-84,84,685,-2140,180,7200,-8244, -4176,11664,-5184).
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=6; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859}, 40]
-
concat([0,0], Vec(x^3*(1 - 12*x + 40*x^2 + 18*x^3 - 308*x^4 + 376*x^5 + 364*x^6 - 882*x^7 + 378*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^40))) \\ Colin Barker, Nov 22 2018
A320935
Number of chiral pairs of color patterns (set partitions) for a row of length n using 5 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 86, 400, 1852, 8868, 42892, 210346, 1038034, 5150110, 25623486, 127740880, 637539592, 3184224728, 15910524632, 79520923966, 397508610454, 1987255480650, 9935410066186, 49674450471460, 248364429410332, 1241798688445588, 6208922948527572, 31044403310614786
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
-
LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {0, 0, 1, 4, 20, 86, 400, 1852}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=5; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
A320934
Number of chiral pairs of color patterns (set partitions) for a row of length n using 4 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 80, 336, 1344, 5440, 21760, 87296, 349184, 1397760, 5591040, 22368256, 89473024, 357908480, 1431633920, 5726601216, 22906404864, 91625881600, 366503526400, 1466015154176, 5864060616704, 23456246661120, 93824986644480, 375299963355136, 1501199853420544, 6004799480791040
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
-
Table[(4^n - 4^Floor[n/2+1])/48, {n, 40}] (* or *)
LinearRecurrence[{4, 4, -16}, {0, 0, 1}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=4; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
CoefficientList[Series[x^2/((-1 + 4 x) (-1 + 4 x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
Showing 1-6 of 6 results.
Comments