A324803 T(n,k) is the number of non-equivalent distinguishing partitions of the cycle on n vertices with at most k part. Square array read by descending antidiagonals, n >= 1, k >= 1.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 45, 7, 0, 0, 0, 0, 0, 0, 6, 34, 127, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 176, 532, 416, 31, 0, 0, 0, 0, 0, 0, 6, 34, 185, 871, 1988, 1221, 57, 0, 0, 0, 0, 0, 0, 6, 34, 185, 996, 3982
Offset: 1
Examples
Table begins: ================================================================= n/k | 1 2 3 4 5 6 7 8 9 10 ------+---------------------------------------------------------- 1 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 2 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 3 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 4 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 6 | 0, 0, 4, 6, 6, 6, 6, 6, 6, 6, ... 7 | 0, 1, 13, 30, 34, 34, 34, 34, 34, 34, ... 8 | 0, 2, 45, 127, 176, 185, 185, 185, 185, 185, ... 9 | 0, 7, 144, 532, 871, 996, 1011, 1011, 1011, 1011, ... 10 | 0, 12, 416, 1988, 3982, 5026, 5280, 5304, 5304, 5304, ... ... For n=7, we can partition the vertices of the cycle C_7 with at most 3 parts, in 13 ways, such that all these partitions are distinguishing for C_7 and that all the 13 partitions are non-equivalent. The partitions are as follows: { { 1 }, { 2, 3 }, { 4, 5, 6, 7 } }, { { 1 }, { 2, 3, 4, 6 }, { 5, 7 } }, { { 1 }, { 2, 3, 4, 7 }, { 5, 6 } }, { { 1 }, { 2, 3, 5, 6 }, { 4, 7 } }, { { 1 }, { 2, 3, 5, 7 }, { 4, 6 } }, { { 1 }, { 2, 3, 6 }, { 4, 5, 7 } }, { { 1 }, { 2, 3, 7 }, { 4, 5, 6 } }, { { 1 }, { 2, 4, 5, 6 }, { 3, 7 } }, { { 1 }, { 2, 4, 7 }, { 3, 5, 6 } }, { { 1, 2 }, { 3, 4, 6 }, { 5, 7 } }, { { 1, 2 }, { 3, 5, 6 }, { 4, 7 } }, { { 1, 2, 4 }, { 3, 6 }, { 5, 7 } }, { { 1, 2, 3, 5 }, { 4, 6, 7 } }.
Links
- Bahman Ahmadi, GAP Program
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Formula
T(n,k) = Sum_{i<=k} A324802(n,i).
Comments