A032239
Number of identity bracelets of n beads of 2 colors.
Original entry on oeis.org
2, 1, 0, 0, 0, 1, 2, 6, 14, 30, 62, 127, 252, 493, 968, 1860, 3600, 6902, 13286, 25446, 48914, 93775, 180314, 346420, 666996, 1284318, 2477328, 4781007, 9240012, 17870709, 34604066, 67058880, 130084990, 252545160, 490722342
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, Formulas for chiral bracelets, 2019; see Section 5.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to bracelets
-
m = 2; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,2],{x,0,mx}],x]],{1->2,2->1}] (* Herbert Kociemba, Nov 29 2016 *)
-
a(n)={if(n<3, binomial(2,n), sumdiv(n, d, moebius(n/d)*(2^d/n - if(d%2, 2^((d+1)/2), 3*2^(d/2)/2)))/2)} \\ Andrew Howroyd, Sep 12 2019
A032240
Number of identity bracelets of n beads of 3 colors.
Original entry on oeis.org
3, 3, 1, 3, 12, 37, 117, 333, 975, 2712, 7689, 21414, 60228, 168597, 475024, 1338525, 3788400, 10741575, 30556305, 87109332, 248967446, 713025093, 2046325125, 5883406830, 16944975036, 48880411272, 141212376513
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to bracelets
-
m = 3; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,3],{x,0,mx}],x]],{1->3,2->3}] (* Herbert Kociemba, Nov 29 2016 *)
-
a(n)={if(n<3, binomial(3,n), sumdiv(n, d, moebius(n/d)*(3^d/n - if(d%2, 3^((d+1)/2), 2*3^(d/2))))/2)} \\ Andrew Howroyd, Sep 12 2019
A309651
T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
Offset: 1
The triangle begins:
0
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 34, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 315, 2484, 7845, 11970, 8820, 2520;
0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440;
...
For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
-
\\ U(n,k) is A309528
U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
T(n,k)={sum(i=2, k, (-1)^(k-i)*binomial(k,i)*U(n,i))} \\ Andrew Howroyd, Aug 12 2019
A032241
Number of identity bracelets of n beads of 4 colors.
Original entry on oeis.org
4, 6, 4, 15, 72, 266, 1044, 3780, 14056, 51132, 188604, 693845, 2572920, 9566046, 35758628, 134134080, 505159200, 1908539864, 7233104844, 27486455049, 104713295712, 399817073946, 1529746919604
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to bracelets
-
m = 4; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,4],{x,0,mx}],x]],{1->4,2->6}] (* Herbert Kociemba, Nov 29 2016 *)
-
a(n)={if(n<3, binomial(4, n), sumdiv(n, d, moebius(n/d)*(4^d/n - if(d%2, 4^((d+1)/2), 5*4^(d/2)/2)))/2)} \\ Andrew Howroyd, Sep 12 2019
A032242
Number of identity bracelets of n beads of 5 colors.
Original entry on oeis.org
5, 10, 10, 45, 252, 1120, 5270, 23475, 106950, 483504, 2211650, 10148630, 46911060, 217863040, 1017057256, 4767774375, 22438419120, 105960830300, 501928967930, 2384170903140, 11353241255900
Offset: 1
- Robert Israel, Table of n, a(n) for n = 1..1434
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to bracelets
-
N:= 50: # for a(1)..a(N)
G:= add(1/2*numtheory:-mobius(n)*(-log(1-5*x^n)/n - add(binomial(5,i)*x^(n*i)/(1-5*x^(2*n)),i=0..2)), n=1..N):
S:= series(G,x,N+1):
5,10,seq(coeff(S,x,j),j=3..N); # Robert Israel, Jun 24 2019
-
m=5; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d](m^(n/d)/n - If[OddQ[n/d], m^((n/d+1)/2), ((m+1)m^(n/(2d))/2)]), {d,Divisors[n]}]/2, {n,3,20}] (* Robert A. Russell, Mar 18 2013 *)
mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,5],{x,0,mx}],x]],{1->5,2->10}] (* Herbert Kociemba, Nov 29 2016 *)
-
a(n)={if(n<3, binomial(5,n), sumdiv(n, d, moebius(n/d)*(5^d/n - if(d%2, 5^((d+1)/2), 3*5^(d/2))))/2)} \\ Andrew Howroyd, Sep 12 2019
A326888
Number of length n asymmetric bracelets with integer entries that cover an initial interval of positive integers.
Original entry on oeis.org
0, 0, 1, 6, 48, 369, 3341, 33960, 393467, 5111052, 73753685, 1170468816, 20263758984, 380047813297, 7676106093000, 166114206886740, 3834434320842720, 94042629507381957, 2442147034668044933, 66942194905675830162, 1931543452344523775050, 58519191359155952404837
Offset: 1
For n = 4, the six asymmetric bracelets are 1123, 1223, 1233, 1234, 1243, 1324.
-
\\ U(n,k) is A309528
U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
a(n)={sum(k=1, n, U(n,k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}
Showing 1-6 of 6 results.
Comments