cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309528 The number of non-equivalent distinguishing colorings of the cycle on n vertices with at most k colors (k>=1). The cycle graph is defined for n>=3; extended to n=1,2 using the closed form. Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the cycle and the columns are indexed by k, the number of permissible colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 37, 2, 0, 0, 0, 35, 105, 252, 266, 117, 6, 0, 0, 0, 56, 210, 672, 1120, 1044, 333, 14, 0, 0, 0, 84, 378, 1512, 3515, 5270, 3788, 975, 30, 0, 0, 0, 120, 630, 3024, 9121, 19350, 23475, 14056, 2712, 62, 0
Offset: 1

Views

Author

Bahman Ahmadi, Aug 06 2019

Keywords

Comments

A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. Two vertex-colorings of a graph are called equivalent if there is an automorphism of the graph which preserves the colors of the vertices. Given a graph G, we use the notation Phi_k(G) to denote the number of non-equivalent distinguishing colorings of G with at most k colors. The sequence here, displays A(n,k)=Phi_k(C_n), i.e., the number of non-equivalent distinguishing colorings of the cycle C_n on n vertices with at most k colors.

Examples

			The table begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 1, 4, 10, 20, 35, 56, 84, 120, ...
0, 0, 3, 15, 45, 105, 210, 378, 630, 990, ...
0, 0, 12, 72, 252, 672, 1512, 3024, 5544, 9504, ...
0, 1, 37, 266, 1120, 3515, 9121, 20692, 42456, 80565, ...
0, 2, 117, 1044, 5270, 19350, 57627, 147752, 338364, 709290, ...
0, 6, 333, 3788, 23475, 102690, 355446, 1039248, 2673810, 6222150, ...
0, 14, 975, 14056, 106950, 555990, 2233469, 7440160, 21493836, 55505550, ...
0, 30, 2712, 51132, 483504, 3009426, 14089488, 53611992, 174189024, 499720518, ...
------
For n=4, we can color the vertices of the cycle C_4 with at most 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
		

Crossrefs

Columns k=2..5 for n >= 3 are A032239, A032240, A032241, A032242.
Different from A293496.

Programs

  • PARI
    A(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2} \\ Andrew Howroyd, Aug 11 2019

Formula

A(n,k) = (A074650(n,k) - A284856(n,k))/2. - Andrew Howroyd, Aug 11 2019

A032253 "DHK" (bracelet, identity, unlabeled) transform of 3,3,3,3,...

Original entry on oeis.org

1, 3, 6, 13, 27, 78, 278, 1011, 3753, 13843, 50934, 187629, 692891, 2568882, 9562074, 35742329, 134117829, 505093740, 1908474674, 7232842785, 27486193251, 104712247296, 399816026490, 1529742725403, 5864036504705, 22517947805343, 86607583200294, 333599771067256
Offset: 0

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jun 17 2019: (Start)
An unmarked cyclic composition of n >= 1 is an equivalence of ordered partitions of n such that two ordered partitions are equivalent iff one can be obtained from the other by rotation.
A dihedral composition of n >= 1 is an equivalence class of ordered partitions of n such that two such ordered partitions are equivalent iff one can be obtained from the other by rotation or reflection. See, for example, Knopfmacher and Robbins (2013).
A cyclic composition (ordered partition) of n >= 1 is called achiral iff it has a reflection symmetry, and it is called chiral otherwise. (This terminology comes from Chemistry in the study of molecules.)
A symmetric (achiral) cyclic composition of n >= 1 is also a symmetric (achiral) dihedral composition of n > = 1 (and vice versa).
Many mathematicians consider a cyclic composition of n >= 1 with one part or with two parts as achiral by default because the axis of symmetry may pass through the parts. When he defines the DHK transform, Bowers (in the link below) does not accept this convention except possibly for a cyclic composition with two identical (in value and color) parts.
Given n >= 1, a(n) here is the number of aperiodic chiral dihedral compositions of n such that the parts may be colored by any one of three colors (say, A, B, C).
Notice that a(1) = 3 because 1_A, 1_B, 1_C are the three colored aperiodic dihedral compositions of n = 1 that (according to Bowers) are considered chiral (= with no reflection symmetry).
In addition, a(2) = 6 because 2_A, 2_B, 2_C, 1_A + 1_B, 1_B + 1_C, 1_C + 1_A are the six colored aperiodic dihedral compositions of n = 2 that (according to Bowers) are considered chiral (= with no reflection symmetry).
In general, for n >= 1, if one disagrees with Bower's conventions about colored aperiodic dihedral compositions with one or two parts, then a(n) - 3*A001651(n) = a(n) - 3 * floor((3*n - 1 )/2) is the actual number of aperiodic chiral dihedral compositions of n such that the parts may be colored by any one of three colors.
Let c = (c(n): n >= 1) be the input sequence and b = (b(n): n >= 1) be the output sequence under Bower's DHK transform; i.e., b = (DHK c). Let C(x) = Sum_{n >= 1} c(n)*x^n; i.e., C(x) is the g.f. of c. Then the g.f. of b is Sum_{n >= 1} b(n)*x^n = -(1/2) * Sum_{d >= 1} (mu(d)/d) * log(1 - C(x^d)) - (1/2) * Sum_{d >= 1} mu(d) * ((C(x^d) + 1)^2/(2 * (1 - C(x^(2*d))) - (1/2)) + C(x) + (1/2) * (C(x)^2 - C(x^2)). Here, c(n) = 3 for all n >= 1 and C(x) = 3*x/(1 - x).
The part of the g.f. that gives the extra aperiodic dihedral compositions due to Bower is C(x) + (1/2) * (C(x)^2 - C(x^2)) = 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). This is the g.f. of (3*A001651(n): n >= 1).
Here, D(x) = (C(x) + 1)^2/(2*(1 - C(x^2))) - (1/2) = 3*x/((1 - 2*x)*(1 - x)) = 3*(x + 3*x^2 + 7*x^3 + 15*x^4 + ...) is the g.f. of (3*A000225(n): n >= 1) = (3*(2^n - 1): n >= 1), which counts the symmetric (= achiral) unmarked cyclic compositions of n where up to 3 colors can be used.
Thus, the sequence (3*A038199(n): n >= 1) = (3*Sum_{d|n} mu(d)*A000225(n/d): n >= 1) = (3*Sum_{d|n} mu(d)*(2^(n/d) - 1): n >= 1) counts the aperiodic symmetric (unmarked) cyclic compositions of n where up to three colors can be used (without Bower's conventions for compositions with one or two parts). This latter sequence has g.f. Sum_{d >= 1} mu(d)*D(x^d) = Sum_{d >= 1} mu(d) * ((C(x^d) + 1)^2/(2 * (1 - C(x^(2*d))) - (1/2)).
Finally, -Sum_{d >= 1} (mu(d)/d)*log(1 - C(x^d)), where C(x) = 3*x/(1 - x), is the g.f. of sequence (A185172(n): n >= 1), which counts the aperiodic (unmarked) cyclic compositions of n where up to three colors can be used. See Eqs. (94) and (95) in Novelli and Thibon (2008) or Eqs. (99) and (100) in Novelli and Thibon (2010).
(End)

Examples

			From _Petros Hadjicostas_, Jun 17 2019: (Start)
For n = 3, the Bower's extra 3*A001651(3) = 12 aperiodic dihedral compositions of 3 (using three colors) with one or two parts are as follows: 3_A, 3_B, 3_C, 1_A + 2_A, 1_B + 2_B, 1_C + 2_C, 1_A + 2_B, 1_A + 2_C, 1_B + 2_A, 1_B + 2_C, 1_C + 2_A, 1_C + 2_B. Since a(3) - 3*A001651(3) = 13 - 12 = 1, we have only one aperiodic chiral dihedral composition of 3 (with more than two parts): 1_A + 1_B + 1_C.
For n = 4, the Bower's extra 3*A001651(4) = 15 aperiodic dihedral compositions of n = 4 (using three colors) with one or two parts are as follows: 4_X, where X \in {A, B, C}; 2_X + 2_Y,  where (X,Y) \in {(A, B), (B, C), (C, A)}; and 1_X + 3_Y, where (X, Y) \in {(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)}.
The remaining (i.e., the genuine) a(4) - 15 = 27 - 15 = 12 aperiodic chiral dihedral compositions of n = 4 of 3 colors are as follows: 1_X + 2_X + 1_Y, where (X, Y) \in {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)}; 1_X + 2_Y + 1_Z and 1_X + 1_X + 1_Y + 1_Z, where (X, Y, Z) \in \{(A, B, C), (B, C, A), (C, A, B)}.
(End)
		

Crossrefs

Programs

  • Mathematica
    A001651[n_] := n - 1 + Ceiling[n/2];
    A185172[n_] := If[n==1, 3, Sum[MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/n];
    A038199[n_] := Sum[((2^d-1) MoebiusMu[n/d]), {d, Divisors[n]}];
    a[n_] := Switch[n, 0, 1, 1, 3, _, 3 A001651[n] + (1/2)(A185172[n] - 3 * A038199[n])];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 17 2019 *)
  • PARI
    DHK(p,n)={my(q=((1+p)^2/(1-subst(p, x, x^2))-1)/2); p + (p^2-subst(p, x, x^2))/2 + sum(d=1, n, moebius(d)*(log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))/d - subst(q + O(x*x^(n\d)), x, x^d)))/2}
    seq(n)={Vec(1 + DHK(3*x/(1-x) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 21 2018

Formula

From Petros Hadjicostas, Jun 18 2019: (Start)
a(n) = 3*A001651(n) + (1/2)*(A185172(n) - 3*A038199(n)) for n >= 1. Here, A001651(n) = floor((3*n - 1)/2) and A038199(n) = Sum_{d|n} mu(d)*(2^(n/d) - 1) for n >= 1. Also, A185172(1) = 3 and A185172(n) = (1/n)*Sum_{d|n} mu(d) * 4^(n/d) for n >= 2.
G.f.: 1 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 3*x^d/(1 - x^d)) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2).
G.f.: 1 - x/2 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 4*x^d) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). (End)

Extensions

a(0)=1 prepended and terms a(24) and beyond from Andrew Howroyd, Sep 21 2018

A032340 Number of identity bracelets with n labeled beads of 5 colors.

Original entry on oeis.org

5, 20, 60, 1080, 30240, 806400, 26560800, 946512000, 38810016000, 1754539315200, 88281990720000, 4861210007808000, 292116146370048000, 18992927542837248000, 1329979704459614208000
Offset: 1

Views

Author

Keywords

Formula

"DHJ" (bracelets, identity, labeled) transform of 5, 0, 0, 0...
n! * A032242.
Showing 1-3 of 3 results.