A185172 Dimensions of primitive Lie algebras connected with the Mantaci-Reutenauer algebra MR^(3).
3, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420, 11728123327840, 45035996273664, 173215367702370
Offset: 1
Examples
From _Petros Hadjicostas_, Jun 18 2019: (Start) Suppose we have three colors, say, A, B, C. Here, a(1) = 3 because we have the following aperiodic unmarked cyclic compositions of n = 1: 1_A, 1_B, 1_C. We have a(2) = 6 because we have the following aperiodic unmarked cyclic compositions of n = 2: 2_A, 2_B, 2_C, 1_A + 1_B, 1_B + 1_C, 1_C + 1_A. We have a(3) = 20 because we have the following aperiodic unmarked cyclic compositions of n = 3: 3_X, where X \in {A, B, C}; 1_X + 2_Y, where (X, Y) \in {(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)}; 1_A + 1_B + 1_C and 1_C + 1_B + 1_A; and 1_X + 1_Y + 1_Y, where (X, Y) \in {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)}. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1650
- C. G. Bower, Transforms (2).
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008. See Eqs. (94) and (95).
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, Discrete Math. 310 (2010), no. 24, 3584-3606. See Eqs. (99) and (100).
Programs
-
Mathematica
a[1] = 3; a[n_] := DivisorSum[n, MoebiusMu[#]*4^(n/#)&]/n; Array[a, 26] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
-
PARI
a(l=3,n) = if (n==1, l, sumdiv(n, d, moebius(d)*(1+l)^(n/d))/n); \\ Michel Marcus, Feb 09 2013
Formula
From Petros Hadjicostas, Jun 17 2019: (Start)
a(1) = 3 and a(n) = (1/n) * Sum_{d|n} mu(d) * 4^(n/d) for n > 1 (from Eq. (95) in Novelli and Thibon (2008) or Eq. (100) in Novelli and Thibon (2010)).
a(n) = (1/n) * Sum_{d|n} mu(d) * (4^(n/d) - 1) = (1/n) * Sum_{d|n} mu(d) *A024036(n/d) for n >= 1.
G.f.: -Sum_{d >= 1} (mu(d)/d) * log(1 - 3*x^d/(1 - x^d)) = -x - Sum_{d >= 1} (mu(d)/d) * log(1 - 4*x^d).
(End)
Extensions
More terms from Michel Marcus, Feb 09 2013
Name edited by Petros Hadjicostas, Jun 17 2019
Comments