A032253 "DHK" (bracelet, identity, unlabeled) transform of 3,3,3,3,...
1, 3, 6, 13, 27, 78, 278, 1011, 3753, 13843, 50934, 187629, 692891, 2568882, 9562074, 35742329, 134117829, 505093740, 1908474674, 7232842785, 27486193251, 104712247296, 399816026490, 1529742725403, 5864036504705, 22517947805343, 86607583200294, 333599771067256
Offset: 0
Keywords
Examples
From _Petros Hadjicostas_, Jun 17 2019: (Start) For n = 3, the Bower's extra 3*A001651(3) = 12 aperiodic dihedral compositions of 3 (using three colors) with one or two parts are as follows: 3_A, 3_B, 3_C, 1_A + 2_A, 1_B + 2_B, 1_C + 2_C, 1_A + 2_B, 1_A + 2_C, 1_B + 2_A, 1_B + 2_C, 1_C + 2_A, 1_C + 2_B. Since a(3) - 3*A001651(3) = 13 - 12 = 1, we have only one aperiodic chiral dihedral composition of 3 (with more than two parts): 1_A + 1_B + 1_C. For n = 4, the Bower's extra 3*A001651(4) = 15 aperiodic dihedral compositions of n = 4 (using three colors) with one or two parts are as follows: 4_X, where X \in {A, B, C}; 2_X + 2_Y, where (X,Y) \in {(A, B), (B, C), (C, A)}; and 1_X + 3_Y, where (X, Y) \in {(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)}. The remaining (i.e., the genuine) a(4) - 15 = 27 - 15 = 12 aperiodic chiral dihedral compositions of n = 4 of 3 colors are as follows: 1_X + 2_X + 1_Y, where (X, Y) \in {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)}; 1_X + 2_Y + 1_Z and 1_X + 1_X + 1_Y + 1_Z, where (X, Y, Z) \in \{(A, B, C), (B, C, A), (C, A, B)}. (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- C. G. Bower, Transforms (2)
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008. See Eqs. (94) and (95).
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, Discrete Math. 310 (2010), no. 24, 3584-3606. See Eqs. (99) and (100).
Crossrefs
Programs
-
Mathematica
A001651[n_] := n - 1 + Ceiling[n/2]; A185172[n_] := If[n==1, 3, Sum[MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/n]; A038199[n_] := Sum[((2^d-1) MoebiusMu[n/d]), {d, Divisors[n]}]; a[n_] := Switch[n, 0, 1, 1, 3, _, 3 A001651[n] + (1/2)(A185172[n] - 3 * A038199[n])]; a /@ Range[0, 30] (* Jean-François Alcover, Sep 17 2019 *)
-
PARI
DHK(p,n)={my(q=((1+p)^2/(1-subst(p, x, x^2))-1)/2); p + (p^2-subst(p, x, x^2))/2 + sum(d=1, n, moebius(d)*(log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))/d - subst(q + O(x*x^(n\d)), x, x^d)))/2} seq(n)={Vec(1 + DHK(3*x/(1-x) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 21 2018
Formula
From Petros Hadjicostas, Jun 18 2019: (Start)
a(n) = 3*A001651(n) + (1/2)*(A185172(n) - 3*A038199(n)) for n >= 1. Here, A001651(n) = floor((3*n - 1)/2) and A038199(n) = Sum_{d|n} mu(d)*(2^(n/d) - 1) for n >= 1. Also, A185172(1) = 3 and A185172(n) = (1/n)*Sum_{d|n} mu(d) * 4^(n/d) for n >= 2.
G.f.: 1 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 3*x^d/(1 - x^d)) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2).
G.f.: 1 - x/2 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 4*x^d) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). (End)
Extensions
a(0)=1 prepended and terms a(24) and beyond from Andrew Howroyd, Sep 21 2018
Comments