cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A032253 "DHK" (bracelet, identity, unlabeled) transform of 3,3,3,3,...

Original entry on oeis.org

1, 3, 6, 13, 27, 78, 278, 1011, 3753, 13843, 50934, 187629, 692891, 2568882, 9562074, 35742329, 134117829, 505093740, 1908474674, 7232842785, 27486193251, 104712247296, 399816026490, 1529742725403, 5864036504705, 22517947805343, 86607583200294, 333599771067256
Offset: 0

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jun 17 2019: (Start)
An unmarked cyclic composition of n >= 1 is an equivalence of ordered partitions of n such that two ordered partitions are equivalent iff one can be obtained from the other by rotation.
A dihedral composition of n >= 1 is an equivalence class of ordered partitions of n such that two such ordered partitions are equivalent iff one can be obtained from the other by rotation or reflection. See, for example, Knopfmacher and Robbins (2013).
A cyclic composition (ordered partition) of n >= 1 is called achiral iff it has a reflection symmetry, and it is called chiral otherwise. (This terminology comes from Chemistry in the study of molecules.)
A symmetric (achiral) cyclic composition of n >= 1 is also a symmetric (achiral) dihedral composition of n > = 1 (and vice versa).
Many mathematicians consider a cyclic composition of n >= 1 with one part or with two parts as achiral by default because the axis of symmetry may pass through the parts. When he defines the DHK transform, Bowers (in the link below) does not accept this convention except possibly for a cyclic composition with two identical (in value and color) parts.
Given n >= 1, a(n) here is the number of aperiodic chiral dihedral compositions of n such that the parts may be colored by any one of three colors (say, A, B, C).
Notice that a(1) = 3 because 1_A, 1_B, 1_C are the three colored aperiodic dihedral compositions of n = 1 that (according to Bowers) are considered chiral (= with no reflection symmetry).
In addition, a(2) = 6 because 2_A, 2_B, 2_C, 1_A + 1_B, 1_B + 1_C, 1_C + 1_A are the six colored aperiodic dihedral compositions of n = 2 that (according to Bowers) are considered chiral (= with no reflection symmetry).
In general, for n >= 1, if one disagrees with Bower's conventions about colored aperiodic dihedral compositions with one or two parts, then a(n) - 3*A001651(n) = a(n) - 3 * floor((3*n - 1 )/2) is the actual number of aperiodic chiral dihedral compositions of n such that the parts may be colored by any one of three colors.
Let c = (c(n): n >= 1) be the input sequence and b = (b(n): n >= 1) be the output sequence under Bower's DHK transform; i.e., b = (DHK c). Let C(x) = Sum_{n >= 1} c(n)*x^n; i.e., C(x) is the g.f. of c. Then the g.f. of b is Sum_{n >= 1} b(n)*x^n = -(1/2) * Sum_{d >= 1} (mu(d)/d) * log(1 - C(x^d)) - (1/2) * Sum_{d >= 1} mu(d) * ((C(x^d) + 1)^2/(2 * (1 - C(x^(2*d))) - (1/2)) + C(x) + (1/2) * (C(x)^2 - C(x^2)). Here, c(n) = 3 for all n >= 1 and C(x) = 3*x/(1 - x).
The part of the g.f. that gives the extra aperiodic dihedral compositions due to Bower is C(x) + (1/2) * (C(x)^2 - C(x^2)) = 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). This is the g.f. of (3*A001651(n): n >= 1).
Here, D(x) = (C(x) + 1)^2/(2*(1 - C(x^2))) - (1/2) = 3*x/((1 - 2*x)*(1 - x)) = 3*(x + 3*x^2 + 7*x^3 + 15*x^4 + ...) is the g.f. of (3*A000225(n): n >= 1) = (3*(2^n - 1): n >= 1), which counts the symmetric (= achiral) unmarked cyclic compositions of n where up to 3 colors can be used.
Thus, the sequence (3*A038199(n): n >= 1) = (3*Sum_{d|n} mu(d)*A000225(n/d): n >= 1) = (3*Sum_{d|n} mu(d)*(2^(n/d) - 1): n >= 1) counts the aperiodic symmetric (unmarked) cyclic compositions of n where up to three colors can be used (without Bower's conventions for compositions with one or two parts). This latter sequence has g.f. Sum_{d >= 1} mu(d)*D(x^d) = Sum_{d >= 1} mu(d) * ((C(x^d) + 1)^2/(2 * (1 - C(x^(2*d))) - (1/2)).
Finally, -Sum_{d >= 1} (mu(d)/d)*log(1 - C(x^d)), where C(x) = 3*x/(1 - x), is the g.f. of sequence (A185172(n): n >= 1), which counts the aperiodic (unmarked) cyclic compositions of n where up to three colors can be used. See Eqs. (94) and (95) in Novelli and Thibon (2008) or Eqs. (99) and (100) in Novelli and Thibon (2010).
(End)

Examples

			From _Petros Hadjicostas_, Jun 17 2019: (Start)
For n = 3, the Bower's extra 3*A001651(3) = 12 aperiodic dihedral compositions of 3 (using three colors) with one or two parts are as follows: 3_A, 3_B, 3_C, 1_A + 2_A, 1_B + 2_B, 1_C + 2_C, 1_A + 2_B, 1_A + 2_C, 1_B + 2_A, 1_B + 2_C, 1_C + 2_A, 1_C + 2_B. Since a(3) - 3*A001651(3) = 13 - 12 = 1, we have only one aperiodic chiral dihedral composition of 3 (with more than two parts): 1_A + 1_B + 1_C.
For n = 4, the Bower's extra 3*A001651(4) = 15 aperiodic dihedral compositions of n = 4 (using three colors) with one or two parts are as follows: 4_X, where X \in {A, B, C}; 2_X + 2_Y,  where (X,Y) \in {(A, B), (B, C), (C, A)}; and 1_X + 3_Y, where (X, Y) \in {(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)}.
The remaining (i.e., the genuine) a(4) - 15 = 27 - 15 = 12 aperiodic chiral dihedral compositions of n = 4 of 3 colors are as follows: 1_X + 2_X + 1_Y, where (X, Y) \in {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)}; 1_X + 2_Y + 1_Z and 1_X + 1_X + 1_Y + 1_Z, where (X, Y, Z) \in \{(A, B, C), (B, C, A), (C, A, B)}.
(End)
		

Crossrefs

Programs

  • Mathematica
    A001651[n_] := n - 1 + Ceiling[n/2];
    A185172[n_] := If[n==1, 3, Sum[MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/n];
    A038199[n_] := Sum[((2^d-1) MoebiusMu[n/d]), {d, Divisors[n]}];
    a[n_] := Switch[n, 0, 1, 1, 3, _, 3 A001651[n] + (1/2)(A185172[n] - 3 * A038199[n])];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 17 2019 *)
  • PARI
    DHK(p,n)={my(q=((1+p)^2/(1-subst(p, x, x^2))-1)/2); p + (p^2-subst(p, x, x^2))/2 + sum(d=1, n, moebius(d)*(log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))/d - subst(q + O(x*x^(n\d)), x, x^d)))/2}
    seq(n)={Vec(1 + DHK(3*x/(1-x) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 21 2018

Formula

From Petros Hadjicostas, Jun 18 2019: (Start)
a(n) = 3*A001651(n) + (1/2)*(A185172(n) - 3*A038199(n)) for n >= 1. Here, A001651(n) = floor((3*n - 1)/2) and A038199(n) = Sum_{d|n} mu(d)*(2^(n/d) - 1) for n >= 1. Also, A185172(1) = 3 and A185172(n) = (1/n)*Sum_{d|n} mu(d) * 4^(n/d) for n >= 2.
G.f.: 1 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 3*x^d/(1 - x^d)) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2).
G.f.: 1 - x/2 - (1/2)*Sum_{d >= 1} (mu(d)/d)*log(1 - 4*x^d) - (1/2)*Sum_{d >= 1} mu(d)*3*x^d/((1 - 2*x^d)*(1 - x^d)) + 3*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). (End)

Extensions

a(0)=1 prepended and terms a(24) and beyond from Andrew Howroyd, Sep 21 2018

A185171 Dimensions of primitive Lie algebras connected with the Mantaci-Reutenauer algebra MR^(2).

Original entry on oeis.org

2, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2012

Keywords

Comments

Maybe the definition should say: "Number of generators of degree n ...". The paper is a little unclear.
From Petros Hadjicostas, Jun 18 2019: (Start)
An unmarked cyclic composition of n >= 1 is an equivalence class of ordered partitions of n such that two such ordered partitions are equivalent iff one can be obtained from the other by rotation.
Here, a(n) is the number of aperiodic unmarked cyclic compositions of n where up to two colors can be used.
It is also the CHK (circular, identity, unlabeled) transform of the sequence 2, 2, 2, ... See the link by Bowers about such transforms.
If c = (c(n): n >= 1) is the input sequence with g.f. C(x) = Sum_{n >= 1} c(n)*x^n, then the g.f. of the output sequence ((CHK c)d: d >= 1) is -Sum{d >= 1} (mu(d)/d) * log(1 - C(x^d)). Here, c(n) = 2 for all n >= 1, and thus, C(x) = 2*x/(1 - x). It follows that the g.f. of the output sequence is -Sum_{d >= 1} (mu(d)/d) * log(1 - 2*x^d/(1 - x^d)).
(End)

Examples

			From _Petros Hadjicostas_, Jun 18 2019: (Start)
Suppose we have two colors, say, A and B. Here, a(1) = 2 because we have the following aperiodic unmarked cyclic compositions of n = 1: 1_A and 1_B.
We have a(2) = 3 because we have the following aperiodic unmarked cyclic compositions of n = 2: 2_A, 2_B, and 1_A + 1_B.
We have a(3) = 8 because we have the following aperiodic unmarked cyclic compositions of n = 3: 3_A and 3_B; 1_X + 2_Y, where (X, Y) \in {(A, A), (A, B), (B, A), (B, B)}; 1_A + 1_B + 1_B and 1_B + 1_A + 1_A.
(End)
		

Crossrefs

Essentially the same as A027376.

Programs

  • Mathematica
    a[1] = 2; a[n_] := DivisorSum[n, MoebiusMu[#]*3^(n/#)&]/n; Array[a, 29] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
  • PARI
    a(l=2,n) = if (n==1, l, sumdiv(n, d, moebius(d)*(1+l)^(n/d))/n); \\ Michel Marcus, Feb 09 2013

Formula

From Petros Hadjicostas, Jun 18 2019: (Start)
a(1) = 2 and a(n) = (1/n) * Sum_{d|n} mu(d) * 3^(n/d) for n > 1 (from Eq. (95) in Novelli and Thibon (2008) or Eq. (100) in Novelli and Thibon (2010)).
a(n) = (1/n) * Sum_{d|n} mu(d) * (3^(n/d) - 1) = (1/n) * Sum_{d|n} mu(d) * A024023(n/d) for n >= 1.
G.f.: -Sum_{d >= 1} (mu(d)/d) * log(1 - 2*x^d/(1 - x^d)) = -x - Sum_{d >= 1} (mu(d)/d) * log(1 - 3*x^d).
(End)

Extensions

More terms from Michel Marcus, Feb 09 2013
Name edited by Petros Hadjicostas, Jun 18 2019
Showing 1-2 of 2 results.