A309528
The number of non-equivalent distinguishing colorings of the cycle on n vertices with at most k colors (k>=1). The cycle graph is defined for n>=3; extended to n=1,2 using the closed form. Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the cycle and the columns are indexed by k, the number of permissible colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 37, 2, 0, 0, 0, 35, 105, 252, 266, 117, 6, 0, 0, 0, 56, 210, 672, 1120, 1044, 333, 14, 0, 0, 0, 84, 378, 1512, 3515, 5270, 3788, 975, 30, 0, 0, 0, 120, 630, 3024, 9121, 19350, 23475, 14056, 2712, 62, 0
Offset: 1
The table begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 1, 4, 10, 20, 35, 56, 84, 120, ...
0, 0, 3, 15, 45, 105, 210, 378, 630, 990, ...
0, 0, 12, 72, 252, 672, 1512, 3024, 5544, 9504, ...
0, 1, 37, 266, 1120, 3515, 9121, 20692, 42456, 80565, ...
0, 2, 117, 1044, 5270, 19350, 57627, 147752, 338364, 709290, ...
0, 6, 333, 3788, 23475, 102690, 355446, 1039248, 2673810, 6222150, ...
0, 14, 975, 14056, 106950, 555990, 2233469, 7440160, 21493836, 55505550, ...
0, 30, 2712, 51132, 483504, 3009426, 14089488, 53611992, 174189024, 499720518, ...
------
For n=4, we can color the vertices of the cycle C_4 with at most 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
-
A(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2} \\ Andrew Howroyd, Aug 11 2019
A309651
T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
Offset: 1
The triangle begins:
0
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 34, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 315, 2484, 7845, 11970, 8820, 2520;
0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440;
...
For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
-
\\ U(n,k) is A309528
U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
T(n,k)={sum(i=2, k, (-1)^(k-i)*binomial(k,i)*U(n,i))} \\ Andrew Howroyd, Aug 12 2019
A203399
T(n, k), a triangular array read by rows, is the number of classes of equivalent 2-color n-bead necklaces (turning over is allowed) that contain k necklaces.
Original entry on oeis.org
2, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 7, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 3, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 6, 2, 0, 2, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 14, 2, 1, 0, 0, 6, 0, 0, 0, 0, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30
Offset: 1
Triangle begins (with rows n >= 1 and columns k >= 1):
2 0
2 1 0 0
2 0 2 0 0 0
2 1 0 3 0 0 0 0
2 0 0 0 6 0 0 0 0 0
2 1 2 0 0 7 0 0 0 0 0 1
2 0 0 0 0 0 14 0 0 0 0 0 0 2
2 1 0 3 0 0 0 18 0 0 0 0 0 0 0 6
2 0 2 0 0 0 0 0 28 0 0 0 0 0 0 0 0 14
From _Petros Hadjicostas_, Jun 07 2019: (Start)
Consider all bracelets (turnover necklaces) of two colors (B and W) that can be generated using one of Ruskey's websites above. We keep his numbering, declare whether it has reflexive symmetry or not (achiral or chiral, resp.), and find its value of k (= number of different marked necklaces belonging to its equivalence class).
We have: (1) BBBBBB (k=1, achiral), (2) BBBBBW (k=6, achiral), (3) BBBBWW (k=6, achiral), (4) BBBWBW (k=6, achiral), (5) BBBWWW (k=6, achiral), (6) BBWBBW (k=3, achiral), (7) BBWBWW (k=12, chiral), (8) BBWWWW (k=6, achiral), (9) BWBWBW (k=2, achiral), (10) BWBWWWW (k=6, achiral), (11) BWWBWW (k=3, achiral), (12) BWWWWW (k=6, achiral), (13) WWWWWW (k=1, achiral).
Hence, only bracelet (7) has no reflection symmetry, and thus it is chiral. The k=12 marked necklaces of its equivalence class are as follows:
BBWBWW, WBBWBW, WWBBWB, BWWBBW, WBWWBB, BWBWWB, and their mirror images BWWBWB, BBWWBW, WBBWWB, BWBBWW, WBWBBW, WWBWBB.
We see that T(n=6, k=1) = 2, T(n=6, k=2) = 1, T(n=6, k=3) = 2, T(n=6, k=6) = 7, and T(n=6, k=12) = 1, which agree with line n=6 in the triangle above. (End)
- Petros Hadjicostas, Table of n, a(n) for n = 1..210, flattened.
- Petros Hadjicostas, Formulas for chiral bracelets, 2019.
- S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, 2011.
- S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, Volume 475, 4 March 2013, Pages 103-112.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Combinatorial Generation Algorithm Algorithm 4.24, p. 95.
- Joe Sawada, Generating bracelets in constant amortized time, SIAM J. Comput. 31 (2001), 259-268.
- R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
-
Needs["Combinatorica`"];
f[list_]:= Sort[NestList[RotateLeft, list, Length[list]-1] ~Join~NestList[RotateLeft, Reverse[list], Length[list]-1]]; Flatten[Table[Distribution[Map[Length, Map[Union, Union[Map[f, Strings[{0, 1}, n]]]]], Range[2 n]], {n, 1, 10}]]
A326660
Number of n-bead asymmetric bracelets with exactly 3 different colored beads.
Original entry on oeis.org
0, 0, 1, 3, 12, 34, 111, 315, 933, 2622, 7503, 21033, 59472, 167118, 472120, 1332945, 3777600, 10720869, 30516447, 87032994, 248820704, 712743768, 2045784183, 5882367570, 16942974048, 48876558318, 141204944529, 408494941773, 1183247473872, 3431450670601
Offset: 1
Case n = 4: There are 3 distinct asymmetric bracelets with exactly 3 colors which are aabc, abbc, abcc.
A032253
"DHK" (bracelet, identity, unlabeled) transform of 3,3,3,3,...
Original entry on oeis.org
1, 3, 6, 13, 27, 78, 278, 1011, 3753, 13843, 50934, 187629, 692891, 2568882, 9562074, 35742329, 134117829, 505093740, 1908474674, 7232842785, 27486193251, 104712247296, 399816026490, 1529742725403, 5864036504705, 22517947805343, 86607583200294, 333599771067256
Offset: 0
From _Petros Hadjicostas_, Jun 17 2019: (Start)
For n = 3, the Bower's extra 3*A001651(3) = 12 aperiodic dihedral compositions of 3 (using three colors) with one or two parts are as follows: 3_A, 3_B, 3_C, 1_A + 2_A, 1_B + 2_B, 1_C + 2_C, 1_A + 2_B, 1_A + 2_C, 1_B + 2_A, 1_B + 2_C, 1_C + 2_A, 1_C + 2_B. Since a(3) - 3*A001651(3) = 13 - 12 = 1, we have only one aperiodic chiral dihedral composition of 3 (with more than two parts): 1_A + 1_B + 1_C.
For n = 4, the Bower's extra 3*A001651(4) = 15 aperiodic dihedral compositions of n = 4 (using three colors) with one or two parts are as follows: 4_X, where X \in {A, B, C}; 2_X + 2_Y, where (X,Y) \in {(A, B), (B, C), (C, A)}; and 1_X + 3_Y, where (X, Y) \in {(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)}.
The remaining (i.e., the genuine) a(4) - 15 = 27 - 15 = 12 aperiodic chiral dihedral compositions of n = 4 of 3 colors are as follows: 1_X + 2_X + 1_Y, where (X, Y) \in {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)}; 1_X + 2_Y + 1_Z and 1_X + 1_X + 1_Y + 1_Z, where (X, Y, Z) \in \{(A, B, C), (B, C, A), (C, A, B)}.
(End)
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- C. G. Bower, Transforms (2)
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008. See Eqs. (94) and (95).
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions, Discrete Math. 310 (2010), no. 24, 3584-3606. See Eqs. (99) and (100).
Cf.
A001651,
A032102,
A032239,
A032240,
A032241,
A032242,
A032244,
A032245,
A032251,
A032252,
A032254,
A032256,
A032257,
A032258,
A032259,
A038199,
A185172.
-
A001651[n_] := n - 1 + Ceiling[n/2];
A185172[n_] := If[n==1, 3, Sum[MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/n];
A038199[n_] := Sum[((2^d-1) MoebiusMu[n/d]), {d, Divisors[n]}];
a[n_] := Switch[n, 0, 1, 1, 3, _, 3 A001651[n] + (1/2)(A185172[n] - 3 * A038199[n])];
a /@ Range[0, 30] (* Jean-François Alcover, Sep 17 2019 *)
-
DHK(p,n)={my(q=((1+p)^2/(1-subst(p, x, x^2))-1)/2); p + (p^2-subst(p, x, x^2))/2 + sum(d=1, n, moebius(d)*(log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))/d - subst(q + O(x*x^(n\d)), x, x^d)))/2}
seq(n)={Vec(1 + DHK(3*x/(1-x) + O(x*x^n), n))} \\ Andrew Howroyd, Sep 21 2018
a(0)=1 prepended and terms a(24) and beyond from
Andrew Howroyd, Sep 21 2018
A308583
Triangle read by rows: T(n,k) = number of aperiodic chiral bracelets (turnover necklaces with no reflection symmetry and period n) with n beads, k of which are white and n - k are black, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 4, 3, 0, 0, 0, 0, 0, 4, 6, 10, 6, 4, 0, 0, 0, 0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0, 0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0, 0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0, 0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0, 0, 0, 12, 35, 90, 150, 197, 197, 150, 90, 35, 12, 0, 0, 0, 0, 0, 14, 44, 126, 222, 340, 368, 340, 222, 126, 44, 14, 0, 0, 0
Offset: 1
The triangle begins (with rows for n >= 1 and columns for k >= 1) as follows:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
0, 0, 2, 2, 2, 0, 0, 0;
0, 0, 3, 4, 4, 3, 0, 0, 0;
0, 0, 4, 6, 10, 6, 4, 0, 0, 0;
0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0;
0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0;
0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0;
0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0;
...
Notice, for example, that T(14, 6) = 90 <> 91 = A180472(14, 6). Out of the 91 chiral bracelets with 6 W and 8 B beads, only WWBWBBBWWBWBBB is periodic.
Using Frank Ruskey's website (listed above) to generate bracelets of fixed content (6, 3) with string length n = 9 and alphabet size 2, we get the following A005513(n = 9) = 7 bracelets: (1) WWWWWWBBB, (2) WWWWWBWBB, (3) WWWWBWWBB, (4) WWWWBWBWB, (5) WWWBWWWBB, (6) WWWBWWBWB, and (7) WWBWWBWWB. From these, bracelets 1, 4, 5, and 7 have reflection symmetry, while bracelets 2, 3 and 6 have no reflection symmetry. Because chiral bracelets 2, 3, and 6 are aperiodic as well, we have T(9, 3) = 3 = T(9, 6).
Starting with a black bead, we count that bead and how many white beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence to get the following dihedral compositions of n = 9 into 3 parts: (1) 1 + 7 + 1, (2) 1 + 2 + 6, (3) 1 + 3 + 5, (4) 2 + 5 + 2, (5) 4 + 1 + 4, (6) 2 + 3 + 4, and (7) 3 + 3 + 3. Again, dihedral compositions 1, 4, 5, and 7 are symmetric (have reflection symmetry), while dihedral compositions 2, 3, and 6 are not symmetric. In addition, chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and so (again) T(9, 3) = 3.
We may also start with a white bead and count that bead and how many black beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence again to get the following (conjugate) dihedral compositions of n = 9 into 6 parts: (1) 1 + 1 + 1 + 1 + 1 + 4, (2) 1 + 1 + 1 + 1 + 2 + 3, (3) 1 + 1 + 1 + 2 + 1 + 3, (4) 1 + 1 + 1 + 2 + 2 + 2, (5) 1 + 1 + 2 + 1 + 1 + 3, (6) 1 + 1 + 2 + 1 + 2 + 2, and (7) 1 + 2 + 1 + 2 + 1 + 2. Again, dihedral compositions 1, 4, 5, and 7 have reflection symmetries, while dihedral compositions 2, 3, and 6 do not have reflection symmetries. Chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and hence T(9, 6) = 3.
A377502
Number of minimum distinguishing labelings in the cycle graph C_n.
Original entry on oeis.org
6, 24, 120, 12, 28, 96, 252, 600, 1364, 3048, 6552, 13804, 29040, 59520, 122400, 248472, 504868, 1017840, 2054388, 4126100, 8294444, 16628160, 33349800, 66784536, 133775712, 267736392, 535920696, 1072242540, 2145452092, 4291768320, 8585609340, 17173070880, 34350563940
Offset: 3
-
a(n)={2*n*if(n<6, if(n>2,[1,3,12][n-2]), sumdiv(n, d, moebius(n/d)*(2^d/n - if(d%2, 2^((d+1)/2), 3*2^(d/2)/2)))/2)} \\ Andrew Howroyd, May 27 2025
Showing 1-9 of 9 results.
Comments