cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A032239 Number of identity bracelets of n beads of 2 colors.

Original entry on oeis.org

2, 1, 0, 0, 0, 1, 2, 6, 14, 30, 62, 127, 252, 493, 968, 1860, 3600, 6902, 13286, 25446, 48914, 93775, 180314, 346420, 666996, 1284318, 2477328, 4781007, 9240012, 17870709, 34604066, 67058880, 130084990, 252545160, 490722342
Offset: 1

Views

Author

Keywords

Comments

For n > 2, a(n) is also number of asymmetric bracelets with n beads of two colors. - Herbert Kociemba, Nov 29 2016

Crossrefs

Column k=2 of A309528 and A309651 for n >= 3.
Row sums of A308583 for n >= 3.

Programs

  • Mathematica
    m = 2; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
    mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,2],{x,0,mx}],x]],{1->2,2->1}] (* Herbert Kociemba, Nov 29 2016 *)
  • PARI
    a(n)={if(n<3, binomial(2,n), sumdiv(n, d, moebius(n/d)*(2^d/n - if(d%2, 2^((d+1)/2), 3*2^(d/2)/2)))/2)} \\ Andrew Howroyd, Sep 12 2019

Formula

"DHK" (bracelet, identity, unlabeled) transform of 2, 0, 0, 0...
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors.
gf(k): Sum_{n>=1} mu(n) * ( -log(1 - k*x^n)/n - Sum_{i=0..2} binomial(k,i) * x^(n*i)/(1 - k*x^(2*n)) )/2. (End)

A305541 Triangle read by rows: T(n,k) is the number of chiral pairs of color loops of length n with exactly k different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 35, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 318, 2487, 7845, 11970, 8820, 2520, 0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440, 0, 62, 7503, 158220, 1344900, 5873760, 14658840, 21772800, 19051200, 9072000, 1814400
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Comments

In other words, the number of n-bead bracelets with beads of exactly k different colors that when turned over are different from themselves. - Andrew Howroyd, Sep 13 2019

Examples

			Triangle T(n,k) begins:
  0;
  0,  0;
  0,  0,    1;
  0,  0,    3,     3;
  0,  0,   12,    24,     12;
  0,  1,   35,   124,    150,     60;
  0,  2,  111,   588,   1200,   1080,     360;
  0,  6,  318,  2487,   7845,  11970,    8820,    2520;
  0, 14,  934, 10240,  46280, 105840,  129360,   80640,  20160;
  0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440;
  ...
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
For T(4,4)=3, the chiral pairs are ABCD-ADCB, ABDC-ACDB, and ACBD-ADBC.
		

Crossrefs

Columns 2-6 are A059076, A305542, A305543, A305544, and A305545.
Row sums are A326895.

Programs

  • Mathematica
    Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = {-k!*(stirling((n+1)\2,k,2) + stirling(n\2+1,k,2))/4 + k!*sumdiv(n,d, eulerphi(d)*stirling(n/d,k,2))/(2*n)} \\ Andrew Howroyd, Sep 13 2019

Formula

T(n,k) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k), where S2(n,k) is the Stirling subset number A008277.
T(n,k) = A087854(n,k) - A273891(n,k).
T(n,k) = (A087854(n,k) - A305540(n,k)) / 2.
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293496(n, i). - Andrew Howroyd, Sep 13 2019

A326660 Number of n-bead asymmetric bracelets with exactly 3 different colored beads.

Original entry on oeis.org

0, 0, 1, 3, 12, 34, 111, 315, 933, 2622, 7503, 21033, 59472, 167118, 472120, 1332945, 3777600, 10720869, 30516447, 87032994, 248820704, 712743768, 2045784183, 5882367570, 16942974048, 48876558318, 141204944529, 408494941773, 1183247473872, 3431450670601
Offset: 1

Views

Author

Andrew Howroyd, Sep 12 2019

Keywords

Comments

Asymmetric bracelets are those primitive (period n) bracelets that when turned over are different from themselves.

Examples

			Case n = 4: There are 3 distinct asymmetric bracelets with exactly 3 colors which are aabc, abbc, abcc.
		

Crossrefs

Formula

a(n) = A032240(n) - 3*A032239(n) for n >= 3.
Moebius transform of A305542.

A326789 Number of n-bead asymmetric bracelets with exactly 4 different colored beads.

Original entry on oeis.org

0, 0, 0, 3, 24, 124, 588, 2484, 10240, 40464, 158220, 608951, 2333520, 8894616, 33864340, 128791140, 490027200, 1865614976, 7110959340, 27138170397, 103717719412, 396965536224, 1521562700988, 5840509149020, 22450188684264, 86412086034120, 333035003533660
Offset: 1

Views

Author

Andrew Howroyd, Sep 12 2019

Keywords

Comments

Asymmetric bracelets are those primitive (period n) bracelets that when turned over are different from themselves.

Crossrefs

Formula

a(n) = A032241(n) - 4*A032240(n) + 6*A032239(n) for n >= 3.
Moebius transform of A305543.

A326888 Number of length n asymmetric bracelets with integer entries that cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 6, 48, 369, 3341, 33960, 393467, 5111052, 73753685, 1170468816, 20263758984, 380047813297, 7676106093000, 166114206886740, 3834434320842720, 94042629507381957, 2442147034668044933, 66942194905675830162, 1931543452344523775050, 58519191359155952404837
Offset: 1

Views

Author

Andrew Howroyd, Sep 12 2019

Keywords

Comments

Asymmetric bracelets are those primitive (period n) bracelets that when turned over are different from themselves.

Examples

			For n = 4, the six asymmetric bracelets are  1123, 1223, 1233, 1234, 1243, 1324.
		

Crossrefs

Row sums of A309651.
Cf. A309528.

Programs

  • PARI
    \\ U(n,k) is A309528
    U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
    a(n)={sum(k=1, n, U(n,k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}

Formula

Moebius transform of A326895.
Showing 1-5 of 5 results.