cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A273891 Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1

Views

Author

Marko Riedel, Jun 02 2016

Keywords

Comments

For bracelets, chiral pairs are counted as one.

Examples

			Triangle begins with T(1,1):
1;
1,  1;
1,  2,    1;
1,  4,    6,     3;
1,  6,   18,    24,     12;
1, 11,   56,   136,    150,     60;
1, 16,  147,   612,   1200,   1080,     360;
1, 28,  411,  2619,   7905,  11970,    8820,    2520;
1, 44, 1084, 10480,  46400, 105840,  129360,   80640,  20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
		

Crossrefs

Row sums give A019537.
Cf. A087854 (oriented), A305540 (achiral), A305541 (chiral).

Programs

  • Mathematica
    (* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
    Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)

Formula

T(n,k) = Sum_{i=0..k-1} (-1)^i * binomial(k,i) * A081720(n,k-i). - Andrew Howroyd, Mar 25 2017
From Robert A. Russell, Sep 26 2018: (Start)
T(n,k) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where S2 is the Stirling subset number A008277.
G.f. for column k>1: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j*x^d).
T(n,k) = (A087854(n,k) + A305540(n,k)) / 2 = A087854(n,k) - A305541(n,k) = A305541(n,k) + A305540(n,k).
(End)

A059076 Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
Offset: 0

Views

Author

Henry Bottomley, Dec 22 2000

Keywords

Comments

Number of chiral bracelets with n beads and two colors.

Examples

			For n=6, the only chiral pair is AABABB-AABBAB.  For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Column 2 of A293496.
Cf. A059053.
Column 2 of A305541.
Equals (A000031 - A164090) / 2.
a(n) = (A052823(n) - A027383(n-2)) / 2.

Programs

  • Mathematica
    nn=35;Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]-CycleIndex[DihedralGroup[n],s]/.Table[s[i]->2,{i,1,n}],{x,0,nn}],x],{n,1,nn}]//Flatten  (* Geoffrey Critzer, Mar 26 2013 *)
    mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
    k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = A000031(n) - A000029(n) = A000029(n) - A029744(n) = (A000031(n) - A029744(n))/2 = A008965(n) - A091696(n)
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n - (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = -(k^floor((n + 1)/2) + k^ceiling((n + 1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k = 2 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A309651 T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
Offset: 1

Views

Author

Bahman Ahmadi, Aug 11 2019

Keywords

Comments

The cycle graph is defined for n>=3; extended to n=1,2 using the closed form.
A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. Two vertex-colorings of a graph are called equivalent if there is an automorphism of the graph which preserves the colors of the vertices. Given a graph G, we use the notation phi_k(G) to denote the number of non-equivalent distinguishing colorings of G with exactly k colors. The sequence here, displays T(n,k)=phi_k(C_n), i.e., the number of non-equivalent distinguishing colorings of the cycle C_n on n vertices with exactly k colors.
From Andrew Howroyd, Aug 15 2019: (Start)
First differs from A305541 at n = 6.
Also the number of n-bead asymmetric bracelets with exactly k different colored beads. More precisely the number of chiral pairs of primitive (aperiodic) color loops of length n with exactly k different colors. For example, for n=4 and k = 3, there are 3 achiral loops (1213, 1232, 1323) and 3 pairs of chiral loops (1123/1132, 1223/1322, 1233/1332).
(End)

Examples

			The triangle begins:
  0
  0,  0;
  0,  0,    1;
  0,  0,    3,     3;
  0,  0,   12,    24,     12;
  0,  1,   34,   124,    150,     60;
  0,  2,  111,   588,   1200,   1080,     360;
  0,  6,  315,  2484,   7845,  11970,    8820,    2520;
  0, 14,  933, 10240,  46280, 105840,  129360,   80640,  20160;
  0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440;
  ...
For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
		

Crossrefs

Columns k=2..4 are A032239(n>=3), A326660, A326789.
Row sums are A326888.

Programs

  • PARI
    \\ U(n,k) is A309528
    U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
    T(n,k)={sum(i=2, k, (-1)^(k-i)*binomial(k,i)*U(n,i))} \\ Andrew Howroyd, Aug 12 2019

Formula

Let n>2. For any k >= floor(n/2) we have phi_k(C_n)=k! * Stirling2(n,k)/2n.
T(n, k) = Sum_{i=2..k} (-1)^(k-i)*binomial(k,i)*A309528(n, i). - Andrew Howroyd, Aug 12 2019
Column k is the Moebius transform of column k of A305541. - Andrew Howroyd, Sep 13 2019

A326895 Number of chiral pairs of color loops of length n with integer entries that cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 6, 48, 370, 3341, 33966, 393468, 5111100, 73753685, 1170469192, 20263758984, 380047816638, 7676106093049, 166114206920706, 3834434320842720, 94042629507775794, 2442147034668044933, 66942194905680941268, 1931543452344523778392, 58519191359156026158522
Offset: 1

Views

Author

Andrew Howroyd, Sep 13 2019

Keywords

Crossrefs

Row sums of A305541.
Cf. A326888.

Programs

  • PARI
    a(n)={sum(k=1, n, -k!*(stirling((n+1)\2,k,2) + stirling(n\2+1,k,2))/4 + k!*sumdiv(n,d, eulerphi(d)*stirling(n/d,k,2))/(2*n))} \\ Andrew Howroyd, Sep 13 2019

Formula

Inverse Moebius transform of A326888.

A305542 Number of chiral pairs of color loops of length n with exactly 3 different colors.

Original entry on oeis.org

0, 0, 1, 3, 12, 35, 111, 318, 934, 2634, 7503, 21071, 59472, 167229, 472133, 1333263, 3777600, 10721837, 30516447, 87035631, 248820816, 712751271, 2045784183, 5882388956, 16942974060, 48876617790, 141204945463, 408495109005, 1183247473872, 3431451145390, 9962348798055, 28953196894668
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Examples

			For a(4)=3, the chiral pairs of color loops are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
		

Crossrefs

Third column of A305541.

Programs

  • Mathematica
    k=3; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
  • PARI
    a(n) = my(k=3); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=3 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052823(n) - A056489(n)) / 2.
a(n) = A305541(n,3).
G.f.: -(3/2) * x^4 * (1+x)^2 / Product_{j=1..3} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)).

A305543 Number of chiral pairs of color loops of length n with exactly 4 different colors.

Original entry on oeis.org

0, 0, 0, 3, 24, 124, 588, 2487, 10240, 40488, 158220, 609078, 2333520, 8895204, 33864364, 128793627, 490027200, 1865625340, 7110959340, 27138210888, 103717720000, 396965694444, 1521562700988, 5840509760582, 22450188684288, 86412088367640, 333035003543900, 1285108410802038, 4964755661788560, 19201631174055992
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Examples

			For a(4)=3, the chiral pairs of color loops are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
		

Crossrefs

Fourth column of A305541.

Programs

  • Mathematica
    k=4; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
  • PARI
    a(n) = my(k=4); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=4 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052824(n) - A056490(n)) / 2.
a(n) = A305541(n,4).
G.f.: -6 * x^6 * (1+x)^2 / Product_{j=1..4} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-4x^d) - 4*log(1-3x^3) + 6*log(1-2x^d) - 4*log(1-x^d)).

A305544 Number of chiral pairs of color loops of length n with exactly 5 different colors.

Original entry on oeis.org

0, 0, 0, 0, 12, 150, 1200, 7845, 46280, 254676, 1344900, 6892425, 34646220, 171715050, 843004688, 4110478470, 19950471120, 96525524140, 466068873900, 2247609721431, 10832163963860, 52194011649150, 251522234238000, 1212501695554920, 5848043487355752, 28223528190496380, 136307124614215660, 658800774340433025, 3186621527711606940
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Examples

			For a(5)=12, the chiral pairs of color loops are ABCDE-AEDCB, ABCED-ADECB, ABDCE-AECDB, ABDEC-ACEDB, ABECD-ADCEB, ABEDC-ACDEB, ACBDE-AEDBC, ACBED-ADEBC, ACDBE-AEBCD, ACEDB-ABDEC, ADBCE-AECBD, ADBEC-ACEBD, and ADCBE-AEBCD.
		

Crossrefs

Fifth column of A305541.

Programs

  • Mathematica
    k=5; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
  • PARI
    a(n) = my(k=5); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=5 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052825(n) - A056491(n)) / 2.
a(n) = A305541(n,5).
G.f.: -30 * x^8 * (1+x)^2 / Product_{j=1..5} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-5x^d) - 5*log(1-4x^d) + 10*log(1-3x^3) - 10*log(1-2x^d) + 5*log(1-x^d)).

A305545 Number of chiral pairs of color loops of length n with exactly 6 different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821592, 5873760, 39705630, 258121080, 1631169900, 10096542792, 61535329380, 370709045280, 2213740488600, 13132064237040, 77509384111278, 455754440462040, 2672268921657540, 15636049474529880, 91353538645037220, 533180401444362672
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Examples

			For a(6) = 60, we pair up the 5! = 120 permutations of BCDEF, each with its reversal.  Then put an A before each to end up with 60 chiral pairs such as ABCDEF-AFEDCB.
		

Crossrefs

Sixth column of A305541.

Programs

  • Mathematica
    k=6; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
  • PARI
    a(n) = my(k=6); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=6 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052826(n) - A056492(n)) / 2.
a(n) = A305541(n,6).
G.f.: -180 * x^10 * (1+x)^2 / Product_{j=1..6} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-6x^d) - 6*log(1-5x^d) + 15*log(1-4x^d) - 20*log(1-3x^3) + 15*log(1-2x^d) - 5*log(1-x^d)).
Showing 1-8 of 8 results.