A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A059076
Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
Offset: 0
For n=6, the only chiral pair is AABABB-AABBAB. For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - _Robert A. Russell_, Sep 24 2018
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Daniel Gabric and Joe Sawada, Efficient Construction of Long Orientable Sequences, arXiv:2401.14341 [cs.DS], 2024.
- Petros Hadjicostas, Formulas for chiral bracelets, 2019; see Section 5.
- John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From _N. J. A. Sloane_, Nov 26 2012
-
nn=35;Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]-CycleIndex[DihedralGroup[n],s]/.Table[s[i]->2,{i,1,n}],{x,0,nn}],x],{n,1,nn}]//Flatten (* Geoffrey Critzer, Mar 26 2013 *)
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
A309651
T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
Offset: 1
The triangle begins:
0
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 34, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 315, 2484, 7845, 11970, 8820, 2520;
0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440;
...
For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
-
\\ U(n,k) is A309528
U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
T(n,k)={sum(i=2, k, (-1)^(k-i)*binomial(k,i)*U(n,i))} \\ Andrew Howroyd, Aug 12 2019
A326895
Number of chiral pairs of color loops of length n with integer entries that cover an initial interval of positive integers.
Original entry on oeis.org
0, 0, 1, 6, 48, 370, 3341, 33966, 393468, 5111100, 73753685, 1170469192, 20263758984, 380047816638, 7676106093049, 166114206920706, 3834434320842720, 94042629507775794, 2442147034668044933, 66942194905680941268, 1931543452344523778392, 58519191359156026158522
Offset: 1
-
a(n)={sum(k=1, n, -k!*(stirling((n+1)\2,k,2) + stirling(n\2+1,k,2))/4 + k!*sumdiv(n,d, eulerphi(d)*stirling(n/d,k,2))/(2*n))} \\ Andrew Howroyd, Sep 13 2019
A305542
Number of chiral pairs of color loops of length n with exactly 3 different colors.
Original entry on oeis.org
0, 0, 1, 3, 12, 35, 111, 318, 934, 2634, 7503, 21071, 59472, 167229, 472133, 1333263, 3777600, 10721837, 30516447, 87035631, 248820816, 712751271, 2045784183, 5882388956, 16942974060, 48876617790, 141204945463, 408495109005, 1183247473872, 3431451145390, 9962348798055, 28953196894668
Offset: 1
For a(4)=3, the chiral pairs of color loops are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
-
k=3; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
a(n) = my(k=3); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
A305543
Number of chiral pairs of color loops of length n with exactly 4 different colors.
Original entry on oeis.org
0, 0, 0, 3, 24, 124, 588, 2487, 10240, 40488, 158220, 609078, 2333520, 8895204, 33864364, 128793627, 490027200, 1865625340, 7110959340, 27138210888, 103717720000, 396965694444, 1521562700988, 5840509760582, 22450188684288, 86412088367640, 333035003543900, 1285108410802038, 4964755661788560, 19201631174055992
Offset: 1
For a(4)=3, the chiral pairs of color loops are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
-
k=4; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
a(n) = my(k=4); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
A305544
Number of chiral pairs of color loops of length n with exactly 5 different colors.
Original entry on oeis.org
0, 0, 0, 0, 12, 150, 1200, 7845, 46280, 254676, 1344900, 6892425, 34646220, 171715050, 843004688, 4110478470, 19950471120, 96525524140, 466068873900, 2247609721431, 10832163963860, 52194011649150, 251522234238000, 1212501695554920, 5848043487355752, 28223528190496380, 136307124614215660, 658800774340433025, 3186621527711606940
Offset: 1
For a(5)=12, the chiral pairs of color loops are ABCDE-AEDCB, ABCED-ADECB, ABDCE-AECDB, ABDEC-ACEDB, ABECD-ADCEB, ABEDC-ACDEB, ACBDE-AEDBC, ACBED-ADEBC, ACDBE-AEBCD, ACEDB-ABDEC, ADBCE-AECBD, ADBEC-ACEBD, and ADCBE-AEBCD.
-
k=5; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
a(n) = my(k=5); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
A305545
Number of chiral pairs of color loops of length n with exactly 6 different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821592, 5873760, 39705630, 258121080, 1631169900, 10096542792, 61535329380, 370709045280, 2213740488600, 13132064237040, 77509384111278, 455754440462040, 2672268921657540, 15636049474529880, 91353538645037220, 533180401444362672
Offset: 1
For a(6) = 60, we pair up the 5! = 120 permutations of BCDEF, each with its reversal. Then put an A before each to end up with 60 chiral pairs such as ABCDEF-AFEDCB.
-
k=6; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
a(n) = my(k=6); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
Showing 1-8 of 8 results.
Comments