A305541 Triangle read by rows: T(n,k) is the number of chiral pairs of color loops of length n with exactly k different colors.
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 35, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 318, 2487, 7845, 11970, 8820, 2520, 0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440, 0, 62, 7503, 158220, 1344900, 5873760, 14658840, 21772800, 19051200, 9072000, 1814400
Offset: 1
Examples
Triangle T(n,k) begins: 0; 0, 0; 0, 0, 1; 0, 0, 3, 3; 0, 0, 12, 24, 12; 0, 1, 35, 124, 150, 60; 0, 2, 111, 588, 1200, 1080, 360; 0, 6, 318, 2487, 7845, 11970, 8820, 2520; 0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160; 0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440; ... For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(4,4)=3, the chiral pairs are ABCD-ADCB, ABDC-ACDB, and ACBD-ADBC.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Crossrefs
Programs
-
Mathematica
Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
PARI
T(n,k) = {-k!*(stirling((n+1)\2,k,2) + stirling(n\2+1,k,2))/4 + k!*sumdiv(n,d, eulerphi(d)*stirling(n/d,k,2))/(2*n)} \\ Andrew Howroyd, Sep 13 2019
Formula
T(n,k) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k), where S2(n,k) is the Stirling subset number A008277.
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293496(n, i). - Andrew Howroyd, Sep 13 2019
Comments