A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A056490
Number of periodic palindromes using exactly four different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 12, 24, 132, 240, 900, 1560, 4980, 8400, 24612, 40824, 113652, 186480, 502500, 818520, 2158260, 3498000, 9087012, 14676024, 37728372, 60780720, 155091300, 249401880, 632972340, 1016542800, 2569858212, 4123173624, 10393634292, 16664094960
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
For n=6, the 12 arrangements are ABACDC, ABADCD, ACABDB, ACADBD, ADABCB, ADACBC, ABCDCB, ABDCDB, ACBDBC, ACDBDC, ADBCBD, and ADCBCD.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a:=[0,0,0,0,0,12,24];; for n in [8..35] do a[n]:=a[n-1]+9*a[n-2]-9*a[n-3]-26*a[n-4]+26*a[n-5]+24*a[n-6]-24*a[n-7]; od; a; # Muniru A Asiru, Sep 26 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0] cat Coefficients(R!(12*x^6*(1+x)/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)*(1-3*x^2)))); // G. C. Greubel, Oct 13 2018
-
a:=n->(factorial(4)/2)*(Stirling2(floor((n+1)/2),4)+Stirling2(ceil((n+1)/2),4)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
k = 4; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1,9,-9,-26,26,24,-24}, {0,0,0,0,0,12,24}, 40] (* Robert A. Russell, Sep 29 2018 *)
-
a(n) = my(k=4); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A214312
a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.
Original entry on oeis.org
3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
Offset: 4
a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
a[n_] := Binomial[n, 4]*a56344[n, 4];
Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
A326789
Number of n-bead asymmetric bracelets with exactly 4 different colored beads.
Original entry on oeis.org
0, 0, 0, 3, 24, 124, 588, 2484, 10240, 40464, 158220, 608951, 2333520, 8894616, 33864340, 128791140, 490027200, 1865614976, 7110959340, 27138170397, 103717719412, 396965536224, 1521562700988, 5840509149020, 22450188684264, 86412086034120, 333035003533660
Offset: 1
A056350
Number of primitive (period n) bracelets using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 3, 24, 136, 612, 2616, 10480, 41364, 159780, 613919, 2341920, 8919204, 33905164, 128904660, 490213680, 1866117224, 7111777860, 27140327757, 103721217388, 396974621676, 1521577377012, 5840546872280
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-5 of 5 results.
Comments