cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A032239 Number of identity bracelets of n beads of 2 colors.

Original entry on oeis.org

2, 1, 0, 0, 0, 1, 2, 6, 14, 30, 62, 127, 252, 493, 968, 1860, 3600, 6902, 13286, 25446, 48914, 93775, 180314, 346420, 666996, 1284318, 2477328, 4781007, 9240012, 17870709, 34604066, 67058880, 130084990, 252545160, 490722342
Offset: 1

Views

Author

Keywords

Comments

For n > 2, a(n) is also number of asymmetric bracelets with n beads of two colors. - Herbert Kociemba, Nov 29 2016

Crossrefs

Column k=2 of A309528 and A309651 for n >= 3.
Row sums of A308583 for n >= 3.

Programs

  • Mathematica
    m = 2; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
    mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,2],{x,0,mx}],x]],{1->2,2->1}] (* Herbert Kociemba, Nov 29 2016 *)
  • PARI
    a(n)={if(n<3, binomial(2,n), sumdiv(n, d, moebius(n/d)*(2^d/n - if(d%2, 2^((d+1)/2), 3*2^(d/2)/2)))/2)} \\ Andrew Howroyd, Sep 12 2019

Formula

"DHK" (bracelet, identity, unlabeled) transform of 2, 0, 0, 0...
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors.
gf(k): Sum_{n>=1} mu(n) * ( -log(1 - k*x^n)/n - Sum_{i=0..2} binomial(k,i) * x^(n*i)/(1 - k*x^(2*n)) )/2. (End)

A203398 T(n,k), a triangular array read by rows, is the number of classes of equivalent 2-color n-bead necklaces (turning over is not allowed) that have k necklaces.

Original entry on oeis.org

2, 2, 1, 2, 0, 2, 2, 1, 0, 3, 2, 0, 0, 0, 6, 2, 1, 2, 0, 0, 9, 2, 0, 0, 0, 0, 0, 18, 2, 1, 0, 3, 0, 0, 0, 30, 2, 0, 2, 0, 0, 0, 0, 0, 56, 2, 1, 0, 0, 6, 0, 0, 0, 0, 99, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 186, 2, 1, 2, 3, 0, 9, 0, 0, 0, 0, 0, 335
Offset: 1

Views

Author

Geoffrey Critzer, Jan 01 2012

Keywords

Comments

Equivalently, the cyclic group of order n acts on the set of length n binary sequences. T(n,k) is the number of orbits that have k elements.

Examples

			  2
  2  1
  2  0  2
  2  1  0  3
  2  0  0  0  6
  2  1  2  0  0  9
  2  0  0  0  0  0  18
  2  1  0  3  0  0  0  30
  2  0  2  0  0  0  0  0  56
  2  1  0  0  6  0  0  0  0  99
  2  0  0  0  0  0  0  0  0  0  186
  2  1  2  3  0  9  0  0  0  0  0   335
		

Crossrefs

A000031 (row sums), T(n,n) = A001037, T(n,n) = A064535 when n is prime, T(n,k) = A001037(k) when k divides n.
Cf. A203399.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    f[list_] := Sort[NestList[RotateLeft, list, Length[list]-1]]; Flatten[Table[Distribution[Map[Length, Map[Union, Union[Map[f, Strings[{0, 1}, n]]]]], Range[n]], {n, 1, 12}]]
Showing 1-2 of 2 results.