A327693 Triangle read by rows: T(n,k) is the number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly k different colored beads.
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 5, 2, 0, 0, 4, 13, 9, 2, 0, 0, 9, 43, 50, 20, 3, 0, 0, 14, 116, 206, 127, 31, 3, 0, 0, 28, 335, 862, 772, 293, 51, 4, 0, 0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 0
Offset: 1
Examples
Triangle begins: 1; 0, 0; 0, 1, 0; 0, 1, 1, 0; 0, 3, 5, 2, 0; 0, 4, 13, 9, 2, 0; 0, 9, 43, 50, 20, 3, 0; 0, 14, 116, 206, 127, 31, 3, 0; 0, 28, 335, 862, 772, 293, 51, 4, 0; 0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0; ... T(6, 4) = 9: {aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd}. Compared with A107424 the patterns {abacad, aacbbd, abcabd, acabdb} are excluded.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, moebius(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))} { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) }
Comments