A320525
Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1
Triangle begins with T(1,1):
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 6, 10, 4, 0;
0, 12, 40, 28, 6, 0;
0, 28, 141, 167, 64, 9, 0;
0, 56, 464, 824, 508, 124, 12, 0;
0, 120, 1480, 3840, 3428, 1300, 220, 16, 0;
0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0;
0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0;
0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
...
For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
-
\\ here Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
A056328
Number of reversible string structures with n beads using exactly four different colors.
Original entry on oeis.org
0, 0, 0, 1, 6, 37, 183, 877, 3930, 17185, 73095, 306361, 1267266, 5198557, 21182343, 85910917, 347187210, 1399451545, 5629911015, 22616256721, 90754855026, 363890126677, 1458172596903, 5840531635357, 23385650196090
Offset: 1
For a(5)=6, the color patterns are ABCDA, ABCBD, AABCD, ABACD, ABCAD, and ABBCD. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=4; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k = 4; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 1, 6, 37, 183}, 30] (* Robert A. Russell, Oct 14 2018 *)
A320936
Number of chiral pairs of color patterns (set partitions) for a row of length n using 6 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859, 1699012, 9808848, 57335124, 338073107, 2004955824, 11936998016, 71253827696, 426061036747, 2550545918300, 15280090686256, 91588065861292, 549159350303235, 3293482358956552, 19755007003402944
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-84,84,685,-2140,180,7200,-8244, -4176,11664,-5184).
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=6; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859}, 40]
-
concat([0,0], Vec(x^3*(1 - 12*x + 40*x^2 + 18*x^3 - 308*x^4 + 376*x^5 + 364*x^6 - 882*x^7 + 378*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^40))) \\ Colin Barker, Nov 22 2018
A320935
Number of chiral pairs of color patterns (set partitions) for a row of length n using 5 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 86, 400, 1852, 8868, 42892, 210346, 1038034, 5150110, 25623486, 127740880, 637539592, 3184224728, 15910524632, 79520923966, 397508610454, 1987255480650, 9935410066186, 49674450471460, 248364429410332, 1241798688445588, 6208922948527572, 31044403310614786
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
-
LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {0, 0, 1, 4, 20, 86, 400, 1852}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=5; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
A320934
Number of chiral pairs of color patterns (set partitions) for a row of length n using 4 or fewer colors (subsets).
Original entry on oeis.org
0, 0, 1, 4, 20, 80, 336, 1344, 5440, 21760, 87296, 349184, 1397760, 5591040, 22368256, 89473024, 357908480, 1431633920, 5726601216, 22906404864, 91625881600, 366503526400, 1466015154176, 5864060616704, 23456246661120, 93824986644480, 375299963355136, 1501199853420544, 6004799480791040
Offset: 1
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
-
Table[(4^n - 4^Floor[n/2+1])/48, {n, 40}] (* or *)
LinearRecurrence[{4, 4, -16}, {0, 0, 1}, 40] (* or *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=4; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
CoefficientList[Series[x^2/((-1 + 4 x) (-1 + 4 x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
Showing 1-5 of 5 results.
Comments