cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320525 Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.
If the top entry of the triangle is changed from 0 to 1, this is the number of non-equivalent distinguishing partitions of the path on n vertices (n >= 1) with exactly k parts (1 <= k <= n). - Bahman Ahmadi, Aug 21 2019

Examples

			Triangle begins with T(1,1):
  0;
  0,   0;
  0,   1,     0;
  0,   2,     2,      0;
  0,   6,    10,      4,      0;
  0,  12,    40,     28,      6,      0;
  0,  28,   141,    167,     64,      9,      0;
  0,  56,   464,    824,    508,    124,     12,     0;
  0, 120,  1480,   3840,   3428,   1300,    220,    16,     0;
  0, 240,  4600,  16920,  21132,  11316,   2900,   360,    20,   0;
  0, 496, 14145,  72655, 123050,  89513,  31846,  5890,   560,  25, 0;
  0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
  ...
For T(3,2)=1, the chiral pair is AAB-ABB.  For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA.  For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A320526, A320527, A320528, A320529.
Row sums are A320937.
Cf. A008277 (oriented), A284949 (unoriented), A304972 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
  • PARI
    \\ here Ach is A304972 as square matrix.
    Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
    T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
    { my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019

Formula

T(n,k) = (S2(n,k) - A(n,k))/2, where S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
T(n,k) = (A008277(n,k) - A304972(n,k)) / 2 = A008277(n,k) - A284949(n,k) = A284949(n,k) - A304972(n,k).

A320936 Number of chiral pairs of color patterns (set partitions) for a row of length n using 6 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859, 1699012, 9808848, 57335124, 338073107, 2004955824, 11936998016, 71253827696, 426061036747, 2550545918300, 15280090686256, 91588065861292, 549159350303235, 3293482358956552, 19755007003402944
Offset: 1

Views

Author

Robert A. Russell, Oct 27 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
A chiral row is not equivalent to its reverse.
There are nonrecursive formulas, generating functions, and computer programs for A056273 and A305752, which can be used in conjunction with the first formula.

Examples

			For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

Crossrefs

Column 6 of A320751.
Cf. A056273 (oriented), A056325 (unoriented), A305752 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=6; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
    LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {0, 0, 1, 4, 20, 86, 409, 1976, 10168, 54208, 299859}, 40]
  • PARI
    concat([0,0], Vec(x^3*(1 - 12*x + 40*x^2 + 18*x^3 - 308*x^4 + 376*x^5 + 364*x^6 - 882*x^7 + 378*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^40))) \\ Colin Barker, Nov 22 2018

Formula

a(n) = (A056273(n) - A305752(n))/2.
a(n) = A056273(n) - A056325(n).
a(n) = A056325(n) - A305752(n).
a(n) = A122746(n-2) + A320526(n) + A320527(n) + A320528(n) + A320529(n).
a(n) = Sum_{j=1..k} (S2(n,j) - Ach(n,j)) / 2, where k=6 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
From Colin Barker, Nov 22 2018: (Start)
G.f.: x^3*(1 - 12*x + 40*x^2 + 18*x^3 - 308*x^4 + 376*x^5 + 364*x^6 - 882*x^7 + 378*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)).
a(n) = 16*a(n-1) - 84*a(n-2) + 84*a(n-3) + 685*a(n-4) - 2140*a(n-5) + 180*a(n-6) + 7200*a(n-7) - 8244*a(n-8) - 4176*a(n-9) + 11664*a(n-10) - 5184*a(n-11) for n>11.
(End)

A056330 Number of reversible string structures with n beads using exactly six different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735, 210361046, 1367510326, 8752976610, 55343947975, 346541488998, 2153041587538, 13292844257198, 81652683550119, 499484958151630
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly six different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(7)=12, the color patterns are ABCDEFA, ABCDEBF, ABCDCEF, AABCDEF, ABACDEF, ABCADEF, ABCDAEF, ABBCDEF, ABCBDEF, ABCDBEF, and ABCCDEF. The first three are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A284949.
Cf. A056313.
Cf. A000770 (oriented), A320529 (chiral), A304976 (achiral).

Programs

  • Mathematica
    k=6; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+3,6] - 3StirlingS2[n/2+2,6] - 8StirlingS2[n/2+1,6] + 16StirlingS2[n/2,6], 3StirlingS2[(n+5)/2,6] - 17StirlingS2[(n+3)/2,6] + 20StirlingS2[(n+1)/2,6]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k = 6; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
    LinearRecurrence[{21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600}, {0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735}, 40] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = A056325(n) - A056324(n).
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=6 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^6 / Product_{k=1..6} (1 - k*x) + x^6 (1+x) (1-4x^2) (1+2x-x^2-4x^3) / Product_{k=1..6} (1 - k*x^2)) / 2.
a(n) = (A000770(n) + A304976(n)) / 2 = A000770(n) - A320529(n) = A320529(n) + A304976(n). (End)
Showing 1-3 of 3 results.